Epoxy resin coatings are commonly used to protect concrete structures due to their excellent chemical corrosion resistance and strong adhesion capacity. However, these coatings are susceptible to damage by surface abrasion and long-term contact with marine climate conditions, deteriorating their appearance and performance. This study aims to optimize the performance of cement-based epoxy resin coatings, bisphenol-A and polyol, in aggressive environments by functionalizing the selected systems with different nanoparticles such as activated carbon, surface modified nanoclay, silica and zinc oxide.
View Article and Find Full Text PDFThe structural organization of iron oxide nanoparticles (NPs) obtained through in situ coprecipitation of iron salts in semi-interpenetrating polymer networks (semi-IPNs) constituted of alginate (Alg) and poly(N-isopropylacrylamide) (PNiPAAm) has been investigated by means of small-angle X-ray scattering and transmission electron microscopy. The oxidation reaction was repeated up to two times to increase the amount of iron oxide NPs formed. The results were compared to the synthesis of iron oxide nanoparticles in an alginate solution.
View Article and Find Full Text PDF