Publications by authors named "Javier S Fandino"

We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).

View Article and Find Full Text PDF

We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and local oscillator tasks. General and simplified expressions are given and, as an example, we have considered their application to the design of a tunable RF MWP BS/UE front end for band selection, based on a Chebyshev Type-II optical filter. The applicability and usefulness of the model are also discussed.

View Article and Find Full Text PDF

Multimode interference reflectors (MIRs) were recently introduced as a new type of photonic integrated devices for on-chip, broadband light reflection. In the original proposal, different MIRs were demonstrated based on total internal reflection mirrors made of two deep-etched facets. Although simpler to fabricate, this approach imposes certain limits on the shape of the field pattern at the reflecting facets, which in turn restricts the types of MIRs that can be implemented.

View Article and Find Full Text PDF

A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained.

View Article and Find Full Text PDF