The present dataset comprises a collection of RGB-D apple tree images that can be used to train and test computer vision-based fruit detection and sizing methods. This dataset encompasses two distinct sets of data obtained from a Fuji and an Elstar apple orchards. The Fuji apple orchard sub-set consists of 3925 RGB-D images containing a total of 15,335 apples annotated with both modal and amodal apple segmentation masks.
View Article and Find Full Text PDFThe present dataset contains colour images acquired in a commercial Fuji apple orchard ( Borkh. cv. Fuji) to reconstruct the 3D model of 11 trees by using structure-from-motion (SfM) photogrammetry.
View Article and Find Full Text PDFThis article contains data related to the research article entitle "Multi-modal Deep Learning for Fruit Detection Using RGB-D Cameras and their Radiometric Capabilities" [1]. The development of reliable fruit detection and localization systems is essential for future sustainable agronomic management of high-value crops. RGB-D sensors have shown potential for fruit detection and localization since they provide 3D information with color data.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2016
Dictionary-based super-resolution (SR) algorithms usually select dictionary atoms based on the distance or similarity metrics. Although the optimal selection of the nearest neighbors is of central importance for such methods, the impact of using proper metrics for SR has been overlooked in literature, mainly due to the vast usage of Euclidean distance. In this paper, we present a very fast regression-based algorithm, which builds on the densely populated anchored neighborhoods and sublinear search structures.
View Article and Find Full Text PDF