Introduction: The probability density function (PDF) of the surface electromyogram (sEMG) depends on contraction force. This dependence, however, has so far been investigated by having the subject generate force at a few fixed percentages of MVC. Here, we examined how the shape of the sEMG PDF changes with contraction force when this force was gradually increased from zero.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2024
EMG filling curve characterizes the EMG filling process and EMG probability density function (PDF) shape change for the entire force range of a muscle. We aim to understand the relation between the physiological and recording variables, and the resulting EMG filling curves. We thereby present an analytical and simulation study to explain how the filling curve patterns relate to specific changes in the motor unit potential (MUP) waveforms and motor unit (MU) firing rates, the two main factors affecting the EMG PDF, but also to recording conditions in terms of noise level.
View Article and Find Full Text PDFA central topic in Bioelectricity is the generation of the extracellular potential that results from the propagation of a transmembrane action potential along the muscle fiber. However, the way in which the extracellular potential is determined by the propagating action potential is difficult to describe, conceptualize, and visualize. Moreover, traditional quantitative approaches aimed at modeling extracellular potentials involve complex mathematical formulations, which do not allow students to visualize how the extracellular potential is generated around the active fiber.
View Article and Find Full Text PDFSarcolemmal membrane excitability is often evaluated by considering the peak-to-peak amplitude of the compound muscle action potential (M wave). However, the first and second M-wave phases represent distinct properties of the muscle action potential, which are differentially affected by sarcolemma properties and other factors such as muscle architecture. Contrasting with previous studies in which voluntary contractions have been used to induce muscle fatigue, we used repeated electrically induced tetanic contractions of the adductor pollicis muscle and assessed the kinetics of M-wave properties during the course of the contractions.
View Article and Find Full Text PDFIt has been shown that, for male subjects, the sEMG activity at low contraction forces is normally "pulsatile", i.e., formed by a few large-amplitude MUPs, coming from the most superficial motor units.
View Article and Find Full Text PDFIn some compound muscle action potentials (M waves) recorded using the belly-tendon configuration, the tendon electrode makes a noticeable contribution to the M wave. However, this finding has only been demonstrated in some hand and foot muscles. Here, we assessed the contribution of the tendon potential to the amplitude of the vastus lateralis, biceps brachii and tibialis anterior M waves, and we also examined the role of this tendon potential in the shoulder-like feature appearing in most M waves.
View Article and Find Full Text PDFIntroduction: The EMG filling factor is an index to quantify the degree to which an EMG signal has been filled. Here, we tested the validity of such index to analyse the EMG filling process as contraction force was slowly increased.
Methods: Surface EMG signals were recorded from the quadriceps muscles of healthy subjects as force was gradually increased from 0 to 40% MVC.
Eur J Appl Physiol
September 2023
Introduction: Under isometric conditions, the increase in muscle force is accompanied by a reduction in the fibers' length. The effects of muscle shortening on the compound muscle action potential (M wave) have so far been investigated only by computer simulation. This study was undertaken to assess experimentally the M-wave changes caused by brief voluntary and stimulated isometric contractions.
View Article and Find Full Text PDFAn analytical derivation of the EMG signal's amplitude probability density function (EMG PDF) is presented and used to study how an EMG signal builds-up, or fills, as the degree of muscle contraction increases. The EMG PDF is found to change from a semi-degenerate distribution to a Laplacian-like distribution and finally to a Gaussian-like distribution.We present a measure, the EMG filling factor, to quantify the degree to which an EMG signal has been built-up.
View Article and Find Full Text PDFIn an active motor unit (MU), the time intervals between the firings of its muscle fibers vary across successive MU activations. This variability is called jitter and is increased in pathological processes that affect the neuromuscular junctions or terminal axonal segments of MUs. Traditionally, jitter has been measured using single fiber electrodes (SFEs) and a difficult and subjective manual technique.
View Article and Find Full Text PDFIntroduction: In the compound muscle action potential (M wave) recorded using the belly-tendon configuration, the contribution of the tendon electrode is assumed to be negligible compared to the belly electrode. We tested this assumption by placing the reference electrode at a distant (contralateral) site, which allowed separate recording of the belly and tendon contributions.
Methods: M waves were recorded at multiple selected sites over the right quadriceps heads and lower leg using two different locations for the reference electrode: the ipsilateral (right) and contralateral (left) patellar tendon.
Even under isometric conditions, muscle contractions are associated with some degree of fiber shortening. The effects of muscle shortening on extracellular electromyographic potentials have not been characterized in detail. Moreover, the anatomical, biophysical, and detection factors influencing the muscle-shortening effects have been neither identified nor understood completely.
View Article and Find Full Text PDFThis study was undertaken to investigate whether sarcolemmal excitability is impaired during a sustained low-force contraction [10% maximal voluntary contraction (MVC)] by assessing muscle conduction velocity and also by analyzing separately the first and second phases of the muscle compound action potential (M wave). Twenty-one participants sustained an isometric knee extension of 10% MVC for 3min. M waves were evoked by supramaximal single shocks to the femoral nerve given at 10-s intervals.
View Article and Find Full Text PDFIntroduction: The effects of muscle contractions on muscle fibre conduction velocity have normally been investigated for contractions of a given duration and intensity, with most studies being focused on the decline on conduction velocity during/after prolonged contractions. Herein, we perform a systematic analysis of the changes in conduction velocity after voluntary contractions of different durations and intensities.
Methods: Conduction velocity was estimated in the vastus lateralis before and after knee extensor isometric maximal voluntary contractions (MVCs) of 1, 3, 6, 10, 30 and 60 s, and after brief (3 s) contractions at 10, 30, 50, 70, and 90% of MVC force.
Removing artifacts from nearby motor units is one of the main objectives when processing scanning-EMG recordings. Methods such as median filtering or masked least-squares smoothing (MLSS) can be used to eliminate artifacts in recordings with just one discharge of the motor unit potential (MUP) at each location. However, more effective artifact removal can be achieved if several discharges per position are recorded.
View Article and Find Full Text PDFObjective: We recently documented that compound muscle action potentials (M waves) recorded over the 'pennate' vastus lateralis showed a sharp deflection (named as a shoulder) in the first phase. Here, we investigated whether such a shoulder was also present in M waves evoked in a muscle with different architecture, such as the biceps brachii, with the purpose of elucidating the electrical origin of such afeature.
Approach: M waves evoked by maximal single shocks to the brachial plexus were recorded in monopolar and bipolar configurations from 72 individuals using large (10 mm diameter) electrodes and from eight individuals using small (1 mm diameter) electrodes arranged in a linear array.
Introduction: We compared the recovery of muscle electrical properties after maximal voluntary contractions (MVCs) of 1 and 3 min duration by examining separately the first and second phases of the muscle compound action potential (M wave).
Methods: M waves were evoked by supramaximal single shocks to the femoral nerve throughout the 30-min recovery following 1-min and 3-min MVCs. The amplitude, duration, and area of the M-wave first and second phases, along with peak-to-peak amplitude and total area, were measured from the knee extensors.
We present a new, automatic, correlation-based method for measuring the duration of motor unit action potentials (MUAPs). The method seeks to replicate the way an expert elctromyographer uses his or her eyes, calculating the start and end of the MUAP waveform on the basis of the degree of similarity of non-excluded discharges. We analysed 68 potentials from normal deltoid muscles during slight contraction.
View Article and Find Full Text PDFThe study was undertaken to examine separately the potentiation of the first and second phases of the M wave in biceps brachii after conditioning maximal voluntary contractions (MVCs) of different durations. M waves were evoked in the biceps brachii muscle before and after isometric MVCs of 1, 3, 6, 10, 30, and 60 s. The amplitude, duration, and area of the first and second phases of monopolar M waves were measured during the 10-min period following each contraction.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? Is impaired membrane excitability reflected by an increase or by a decrease in M-wave amplitude? What is the main finding and its importance? The magnitude of the M-wave first and second phases changed in completely different ways during intermittent maximal voluntary contractions, leading to the counterintuitive conclusion that it is an increase (and not a decrease) of the M-wave first phase that reflects impaired membrane excitability.
Abstract: The study was undertaken to investigate separately the changes in the first and second phases of the muscle compound action potential (M-wave) during 4 min of intermittent maximal voluntary contractions (MVCs) of the quadriceps. M-waves were evoked by supramaximal single electrical stimulation to the femoral nerve delivered in the resting periods between 48 successive MVCs of 3 s.
Objective: To evaluate the performance of a recently proposed motor unit action potential (MUAP) averaging method based on a sliding window, and compare it with relevant published methods in normal and pathological muscles.
Methods: Three versions of the method (with different window lengths) were compared to three relevant published methods in terms of signal analysis-based merit figures and MUAP waveform parameters used in the clinical practice. 218 MUAP trains recorded from normal, myopathic, subacute neurogenic and chronic neurogenic muscles were analysed.
It has been recurrently observed that, for compound muscle action potentials (M wave) recorded over the innervation zone of the , the descending portion of the first phase generally shows an "inflection" or "shoulder." We sought to clarify the electrical origin of this shoulder-like feature and examine its implications. M waves evoked by maximal single shocks to the femoral nerve were recorded in monopolar and bipolar configurations from 126 individuals using classical (10-mm recording diameter, 20-mm inter-electrode distance) electrodes and from eight individuals using small electrodes arranged in a linear array.
View Article and Find Full Text PDFScanning-EMG is an electrophysiological technique in which the electrical activity of the motor unit is recorded at multiple points along a corridor crossing the motor unit territory. Correct analysis of the scanning-EMG signal requires prior elimination of interference from nearby motor units. Although the traditional processing based on the median filtering is effective in removing such interference, it distorts the physiological waveform of the scanning-EMG signal.
View Article and Find Full Text PDFThe compound muscle action potential (M wave) has been commonly used to assess the peripheral properties of the neuromuscular system. More specifically, changes in the M-wave features are used to examine alterations in neuromuscular propagation that can occur during fatiguing contractions. The utility of the M wave is based on the assumption that impaired neuromuscular propagation results in a decrease in M-wave size.
View Article and Find Full Text PDFPurpose: The present study aimed at comparing knee extensor neuromuscular properties determined with transcutaneous electrical stimulation using two pulse durations before and after a standardized fatigue protocol.
Methods: In the first sub-study, 19 healthy participants (ten women and nine men; 28 ± 5 years) took part to two separate testing sessions involving the characterization of voluntary activation (twitch interpolation technique), muscle contractility (evoked forces by single and paired stimuli), and neuromuscular propagation (M-wave amplitude from vastus lateralis and vastus medialis muscles) obtained at supramaximal intensity with a pulse duration of either 0.2 or 1 ms.