The intestine is a highly dynamic environment that requires tight control of the various inputs to maintain homeostasis and allow for proper responses to injury. It was recently found that the stem cell niche and epithelium is regenerated after injury by de-differentiated adult cells, through a process that gives rise to Sca1+ fetal-like cells and is driven by a transient population of Clu revival stem cells (revSCs). However, the molecular mechanisms that regulate this dynamic process have not been fully defined.
View Article and Find Full Text PDFThe intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community.
View Article and Find Full Text PDFOxymatrine is a traditional Chinese herbal product that exhibits anti-inflammatory effects in models of heart, brain and liver injury. We investigated the impact of oxymatrine in an acute model of intestinal injury and inflammation. Oxymatrine significantly decreased LPS-induced NF-κB-driven luciferase activity, correlating with diminished induction of Cxcl2, Tnfα and Il6 mRNA expression in rat IEC-6 and murine BMDC.
View Article and Find Full Text PDFBackground: Theaflavins including theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3'-gallate (TF3'G), and theaflavin-3,3'-digallate (TFDG), are the most important bioactive polyphenols in black tea. Because of their poor systemic bioavailability, it is still unclear how these compounds can exert their biological functions. The objective of this study is to identify the microbial metabolites of theaflavins in mice and in humans.
View Article and Find Full Text PDFThe anti-apoptotic protein Survivin and the cyclin-dependent kinase p34Cdc2 regulate cell cycle progression and apoptosis. p34Cdc2 activation is required for its pro-apoptotic activity and phosphorylation of p34Cdc2 at Tyrosine-15 (Tyr15) maintains p34Cdc2 in an inactive state. In BaF3 IL-3-dependent murine hematopoietic cells, over-expression of wild-type (wt)-Survivin increased Tyrosine phosphorylation of p34Cdc2, while over-expression of dominant-negative (dn) T34A-Survivin decreased Tyr15 phosphorylation.
View Article and Find Full Text PDFPhosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt.
View Article and Find Full Text PDF