Publications by authors named "Javier Rial"

Cylindrical magnetic nanowires are key elements of fast-recording and high-density 3D-storage devices. The accurate tuning of the magnetization processes at the nanoscale is crucial for the development of future nano-devices. Here, we analyzed the magnetization of Ni nanostructures with 15-100 nm in diameter and 12-230 nm in length and compared our results with experimental data for periodic arrays.

View Article and Find Full Text PDF

A racetrack memory is a device where the information is stored as magnetic domains (bits) along a nanowire (track). To read and record the information, the bits are moved along the track by current pulses until they reach the reading/writing heads. In particular, 3D racetrack memory devices use arrays of vertically aligned wires (tracks), thus enhancing storage density.

View Article and Find Full Text PDF

Standard molecular binding isothermal titration calorimetric (ITC) experiments are designed to get thermodynamic information: changes in Gibbs energy, enthalpy, and entropy associated to the studied process. Traditionally, the kinetic information contained in the ITC raw signal has been ignored. For a usual one-step process, this corresponds to the rate constants for the association and the dissociation of the complex (k and k).

View Article and Find Full Text PDF

The comprehension of molecular recognition phenomena demands the understanding of the energetic and kinetic processes involved. General equations valid for the thermodynamic analysis of any observable that is assessed as a function of the concentration of the involved compounds are described, together with their implementation in the AFFINImeter software. Here, a maximum of three different molecular species that can interact with each other to form an enormous variety of supramolecular complexes are considered.

View Article and Find Full Text PDF

Searching for high-performance permanent magnets components with no limitation in shape and dimensions is highly desired to overcome the present design and manufacturing restrictions, which affect the efficiency of the final devices in energy, automotive and aerospace sectors. Advanced 3D-printing of composite materials and related technologies is an incipient route to achieve functional structures avoiding the limitations of traditional manufacturing. Gas-atomized MnAlC particles combined with polymer have been used in this work for fabricating scalable rare earth-free permanent magnet composites and extruded flexible filaments with continuous length exceeding 10 m.

View Article and Find Full Text PDF

Isothermal titration calorimetry (ITC) has long been used for kinetic studies in chemistry, but this remained confined to enzymatic studies in the biological field. In fact, the biological community has long had the tendency of ignoring the kinetic possibilities of ITC considering it solely as a thermodynamic technique, whereas surface plasmon resonance is seen as the kinetic technique par excellence. However, the primary signal recorded by ITC is a heat power which is directly related to the kinetics of the reaction.

View Article and Find Full Text PDF