Publications by authors named "Javier Prieto"

The influence of surface morphology and the oxidation state on the electrocatalytic activity of nanostructured electrodes is well recognized, yet disentangling their individual roles in specific reactions remains challenging. Here, we investigated the electrooxidation of sulfite ions in an alkaline environment using cyclic voltammetry on copper oxide nanostructured electrodes with different oxidation states and morphologies but with similar active areas. To this aim, we synthesized nanostructured Cu films made of nanoparticles or nanorods on top of glassy carbon electrodes.

View Article and Find Full Text PDF
Article Synopsis
  • The SMN1 gene defect leads to spinal muscular atrophy (SMA), characterized by the loss of motor neurons and resulting muscle weakness and atrophy.
  • Current treatments improve symptoms but struggle to provide a permanent fix for the genetic issue behind SMA.
  • An innovative CRISPR-Cas9 approach was used to successfully correct the SMA mutation in mice, with long-term benefits observed when combined with additional genetic supplementation, offering hope for more effective treatments for inherited diseases.
View Article and Find Full Text PDF

Physical aggression is a serious and widespread problem in society, affecting people worldwide. It impacts nearly every aspect of life. While some studies explore the root causes of violent behavior, others focus on urban planning in high-crime areas.

View Article and Find Full Text PDF

The global evolution of the Internet is experiencing a notable and inevitable change towards a convergent scenario known as the Internet of Things (IoT), where a large number of devices with heterogeneous characteristics and requirements have to be interconnected to serve different verticals, such as smart cities, intelligent transportation systems, smart grids, (ITS) or e-health [...

View Article and Find Full Text PDF

Quinoa (Chenopodium quinoa Willd.) leafy greens (QLGs) are plant-based foods of high nutritional value that have been scarcely studied. In this work, the nutritional and functional composition of three QLGs varieties was evaluated.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder (the third most common, following stroke and migraines). A key aspect of its diagnosis is the presence of seizures that occur without a known cause and the potential for new seizures to occur. Machine learning has shown potential as a cost-effective alternative for rapid diagnosis.

View Article and Find Full Text PDF

Consumers demand food products that can impact positively health. Those made from quinoa or amaranth flours could meet these expectations. Thus, the main goal of this work was to evaluate the nutritional composition of easy-to-eat snacks combining red pepper, carrot, or zucchini with quinoa or amaranth flours, well-recognized superfoods.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein.

View Article and Find Full Text PDF

It is widely believed that cellular senescence plays a critical role in both aging and cancer, and that senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Here we show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the esophageal epithelium and Myc positively regulates their self-renewal by maintaining their undifferentiated state.

View Article and Find Full Text PDF

Partial reprogramming by expression of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) for short periods of time restores a youthful epigenetic signature to aging cells and extends the life span of a premature aging mouse model. However, the effects of longer-term partial reprogramming in physiologically aging wild-type mice are unknown. Here, we performed various long-term partial reprogramming regimens, including different onset timings, during physiological aging.

View Article and Find Full Text PDF

Metabolic rewiring and mitochondrial dynamics remodelling are hallmarks of cell reprogramming, but the roles of the reprogramming factors in these changes are not fully understood. Here we show that c-MYC induces biosynthesis of fatty acids and increases the rate of pentose phosphate pathway. Time-course profiling of fatty acids and complex lipids during cell reprogramming using lipidomics revealed a profound remodelling of the lipid content, as well as the saturation and length of their acyl chains, in a c-MYC-dependent manner.

View Article and Find Full Text PDF

Most air-stable 2D materials are relatively inert, which makes their chemical modification difficult. In particular, in the case of MoS , the semiconducting 2 H-MoS is much less reactive than its metallic counterpart, 1T-MoS . As a consequence, there are hardly any reliable methods for the covalent modification of 2 H-MoS .

View Article and Find Full Text PDF

Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult.

View Article and Find Full Text PDF

Internet of Things (IoT) is the paradigm that has largely contributed to the development of smart buildings in our society. This technology makes it possible to monitor all aspects of the smart building and to improve its operation. One of the main challenges encountered by IoT networks is that the the data they collect may be unreliable since IoT devices can lose accuracy for several reasons (sensor wear, sensor aging, poorly constructed buildings, etc.

View Article and Find Full Text PDF

Cell reprogramming is thought to be associated with a full metabolic switch from an oxidative- to a glycolytic-based metabolism. However, neither the dynamics nor the factors controlling this metabolic switch are fully understood. By using cellular, biochemical, protein array, metabolomic, and respirometry analyses, we found that c-MYC establishes a robust bivalent energetics program early in cell reprogramming.

View Article and Find Full Text PDF

Unobtrusive indoor location systems must rely on methods that avoid the deployment of large hardware infrastructures or require information owned by network administrators. Fingerprinting methods can work under these circumstances by comparing the real-time received RSSI values of a smartphone coming from existing Wi-Fi access points with a previous database of stored values with known locations. Under the fingerprinting approach, conventional methods suffer from large indoor scenarios since the number of fingerprints grows with the localization area.

View Article and Find Full Text PDF

At present, the domotization of homes and public buildings is becoming increasingly popular. Domotization is most commonly applied to the field of energy management, since it gives the possibility of managing the consumption of the devices connected to the electric network, the way in which the users interact with these devices, as well as other external factors that influence consumption. In buildings, Heating, Ventilation and Air Conditioning (HVAC) systems have the highest consumption rates.

View Article and Find Full Text PDF

Real-time Localization Systems have been postulated as one of the most appropriated technologies for the development of applications that provide customized services. These systems provide us with the ability to locate and trace users and, among other features, they help identify behavioural patterns and habits. Moreover, the implementation of policies that will foster energy saving in homes is a complex task that involves the use of this type of systems.

View Article and Find Full Text PDF

Somatic cells can be reprogrammed into a pluripotent cellular state similar to that of embryonic stem cells. Given the significant physiological differences between the somatic and pluripotent cells, cell reprogramming is associated with a profound reorganization of the somatic phenotype at all levels. The remodeling of mitochondrial morphology is one of these dramatic changes that somatic cells have to undertake during cell reprogramming.

View Article and Find Full Text PDF
Article Synopsis
  • Promoting behavioral changes for energy savings in public buildings involves complex tech integration.
  • Serious games developed with the CAFCLA framework can help users adopt better energy and health habits.
  • Data from wireless sensor networks can motivate users to lower energy consumption through social interaction and competition.
View Article and Find Full Text PDF

Human CMT2-FiPS4F1 cell line was generated from fibroblasts of a patient with Charcot-Marie-Tooth disease harbouring the following mutations in the GDAP1 gene in heterozygosis: p.Q163X/p.T288NfsX3.

View Article and Find Full Text PDF

Sepsis is a potentially lethal condition that may be ameliorated through early monitoring of circulating activated leukocytes for faster stratification of severity of illness and improved administration of targeted treatment. Characterization of the intrinsic electrical properties of leukocytes is label-free and can provide a quick way to quantify the number of activated cells as sepsis progresses. Iso-dielectric separation (IDS) uses dielectrophoresis (DEP) to characterize the electrical signatures of cells.

View Article and Find Full Text PDF

We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming.

View Article and Find Full Text PDF

During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mitochondrial fragmentation occurs upon expression of reprogramming factors.

View Article and Find Full Text PDF