Primary immunodeficiencies, including Wiskott-Aldrich syndrome (WAS), are a main target for genome-editing strategies using specific nucleases (SNs) because a small number of corrected hematopoietic stem cells could cure patients. In this work, we have designed various WAS gene-specific CRISPR/Cas9 systems and compared their efficiency and specificity with homodimeric and heterodimeric WAS-specific zinc finger nucleases (ZFNs), using K-562 cells as a cellular model and plasmid nucleofection or integration-deficient lentiviral vectors (IDLVs) for delivery. The various CRISPR/Cas9 and ZFN SNs showed similar efficiency when using plasmid nucleofection for delivery.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 endonuclease (Cas9) derived from bacterial adaptive immune systems is a revolutionary tool used in both basic and applied science. It is a versatile system that enables the genome of different species to be modified by generating double strand breaks (DSBs) at specific locations. However, all of the CRISPR/Cas9 systems can also produce DSBs at off-target sites that differ substantially from on-target sites.
View Article and Find Full Text PDF