Publications by authors named "Javier Perez-Ramirez"

Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.

View Article and Find Full Text PDF
Article Synopsis
  • Diatomic catalysts (DACs) leverage the interactions between adjacent metal atoms to enhance the properties of single-atom catalysts (SACs), but their preparation and characterization pose challenges.
  • A new carbon nitride-supported Pd-DAC was developed, achieving a remarkable 92% yield in photocatalytic water-donating transfer hydrogenation of 4-vinylphenol, outperforming both Pd single atoms (47%) and nanoparticles (1%).
  • This study combines advanced imaging and machine learning to confirm the presence of dimeric Pd species and uses DFT simulations to explain the superior performance of Pd-DAC through improved substrate activation, offering a more sustainable alternative to traditional hydrogenation methods.
View Article and Find Full Text PDF

Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity.

View Article and Find Full Text PDF
Article Synopsis
  • Transmission electron microscopy (TEM) is essential in heterogeneous catalysis for measuring the size of metal nanoparticles, but current methods rely on spherical assumptions that limit accuracy.
  • Cycle-consistent generative adversarial networks (CycleGANs) are proposed as a solution to connect experimental TEM images with their atomic structure, enhancing the extraction of meaningful data.
  • A new network developed for estimating nanoparticle size can accurately assess ≈70% of observed particles, paving the way for more precise characterization of catalytic materials by overcoming limitations of traditional techniques.
View Article and Find Full Text PDF

Since the dawn of agitated brewing in the Paleolithic era, effective mixing has enabled efficient reactions. Emerging catalytic chemical polyolefin recycling processes present unique challenges, considering that the polymer melt has a viscosity three orders of magnitude higher than that of honey. The lack of protocols to achieve effective mixing may have resulted in suboptimal catalyst effectiveness.

View Article and Find Full Text PDF
Article Synopsis
  • - The current linear plastics economy faces significant challenges due to rising polymer demand, prompting the exploration of a circular alternative through chemical recycling using the waste-to-methanol-to-olefins (WMO) approach.
  • - This study evaluates both the environmental impacts and economic viability of this circular production route (CPR) in 2020 and 2050, revealing that it could substantially reduce environmental impacts by 2050, especially with a renewable energy mix.
  • - However, transitioning from a linear to a circular model presents challenges in 2020, leading to increased environmental impacts in certain areas, yet the economic analysis indicates that large-scale production of ethylene from waste polymers could be competitive with traditional fossil sources.
View Article and Find Full Text PDF

Heterogeneous catalysts are essential for thermocatalytic CO hydrogenation to methanol, a key route for sustainable production of this vital platform chemical and energy carrier. The primary catalyst families studied include copper-based, indium oxide-based, and mixed zinc-zirconium oxides-based materials. Despite significant progress in their design, research is often compartmentalized, lacking a holistic overview needed to surpass current performance limits.

View Article and Find Full Text PDF

Using heterogeneous single-atom catalysts (SACs) in the Suzuki-Miyaura coupling (SMC) has promising economic and environmental benefits over traditionally applied palladium complexes. However, limited mechanistic understanding hinders progress in their design and implementation. Our study provides critical insights into the working principles of Pd@CN, a promising SAC for the SMC.

View Article and Find Full Text PDF

Single-atom catalysts (SACs), possessing a uniform metal site structure, are a promising class of materials for selective oxidations of hydrocarbons. However, their design for targeted applications requires careful choice of metal-host combinations and suitable synthetic techniques. Here, we report iron atoms stabilised on defective hexagonal boron nitride (h-BN) mechanochemical activation in a ball mill as an effective catalyst for propylene production NO-mediated oxidative propane dehydrogenation (NO-ODHP), reaching 95% selectivity at 6% propane conversion and maintaining stable performance for 40 h on stream.

View Article and Find Full Text PDF

Developing efficient catalysts for syngas-based higher alcohol synthesis (HAS) remains a formidable research challenge. The chain growth and CO insertion requirements demand multicomponent materials, whose complex reaction dynamics and extensive chemical space defy catalyst design norms. We present an alternative strategy by integrating active learning into experimental workflows, exemplified via the FeCoCuZr catalyst family.

View Article and Find Full Text PDF

Curious about how chemistry can contribute to sustainable development? In this overview, we explain the essence of NCCR funding, the research focus and structural goals of NCCR Catalysis, and how these align with the sustainable development goals (SDGs). Additionally, we highlight opportunities for getting involved with our program.

View Article and Find Full Text PDF

Transitioning from both the direct and indirect use of fossil fuels to the renewable and sustainable resources of the near future demands a focal shift in catalysis research - from investigating catalytic reactions in isolation to developing coupled reactions for modern chemical value chains. In this Perspective, we discuss the status and emerging prospects of coupled catalytic reactions across various scales and provide key examples. Besides being a sustainable and essential alternative to current fossil-based processes, the coupling of catalytic reactions offers novel and scalable pathways to value-added chemicals.

View Article and Find Full Text PDF
Article Synopsis
  • * Ammonia and methanol production are key areas contributing to over 50% of CO emissions; life cycle assessments show that while fossil routes struggle to cut emissions past 10% by 2050, green technologies could reduce emissions by up to 90%.
  • * A proposed roadmap suggests a phased adoption of green production methods in 26 regions globally to achieve net-zero emissions by 2050, highlighting that these green technologies could also become more cost-effective over time.
View Article and Find Full Text PDF

Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrO, for CO hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrO catalysts with small amounts (0.

View Article and Find Full Text PDF

Chemistry, a vital tool for sustainable development, faces a challenge due to the lack of clear guidance on actionable steps, hindering the optimal adoption of sustainability practices across its diverse facets from discovery to implementation. This Scientific Perspective explores established frameworks and principles, proposing a conciliated set of triple E priorities anchored on Environmental, Economic, and Equity pillars for research and decision making. We outline associated metrics, crucial for quantifying impacts, classifying them according to their focus areas and scales tackled.

View Article and Find Full Text PDF

Biomass waste-derived engineered biochar for CO capture presents a viable route for climate change mitigation and sustainable waste management. However, optimally synthesizing them for enhanced performance is time- and labor-intensive. To address these issues, we devise an active learning strategy to guide and expedite their synthesis with improved CO adsorption capacities.

View Article and Find Full Text PDF

Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy.

View Article and Find Full Text PDF

C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates.

View Article and Find Full Text PDF

Invited for this month's cover is the group of Javier Pérez-Ramírez at ETH Zürich, which collaborated with the group of Tsvetelina Merdzhanova at Forschungszentrum Jülich. The image shows how artificial leaves, able to recycle carbon dioxide into syngas of variable composition, could be integrated with chemical plants. The Research Article itself is available at 10.

View Article and Find Full Text PDF

The development of selective catalysts for direct conversion of ammonia into nitrous oxide, NO, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective NO production over 100 h on stream up to 79% NO selectivity at full NH conversion.

View Article and Find Full Text PDF

Catalytic hydrogenolysis has the potential to convert high-density polyethylene (HDPE), which comprises about 30 % of plastic waste, into valuable alkanes. Most investigations have focused on increasing activity for lab grade HDPEs displaying low molecular weight, with limited mechanistic understanding of the product distribution. No efficient catalyst is available for consumer grades due to their lower reactivity.

View Article and Find Full Text PDF

Single-atom heterogeneous catalysts (SACs) attract growing interest in their application in green chemistry and organic synthesis due to their potential for achieving atomic-level precision. These catalysts offer the possibility of achieving selectivity comparable to the traditionally applied organometallic complexes, while enhancing metal utilization and recovery. However, an understanding of SAC performance in organic reactions remains limited to model substrates, and their application as drop-in solutions may not yield optimal activity.

View Article and Find Full Text PDF

Intense efforts have been devoted to developing green and blue centralised Haber-Bosch processes (gHB and bHB, respectively), but the feasibility of a decentralised and sustainable scheme has yet to be assessed. Here we reveal the conditions under which small-scale systems based on the electrocatalytic reduction of nitrogen (eN2R) powered by photovoltaic energy (NH3-leaf) could become a competitive technology in terms of environmental criteria. To this end, we calculated energy efficiency targets based on solar irradiation atlases to guide research in the incipient eN2R field.

View Article and Find Full Text PDF

Understanding the reaction mechanism is critical yet challenging in heterogeneous catalysis. Reactive intermediates, e.g.

View Article and Find Full Text PDF

Scaling up syntheses from mg to kg quantities is a complex endeavor. Besides adapting laboratory protocols to industrial processes and equipment and thorough safety assessments, much attention is paid to the reduction of the process' environmental impact. For processes including transition metal catalyzed steps, e.

View Article and Find Full Text PDF