Publications by authors named "Javier Perez-Castells"

Intramolecular Diels-Alder vinylarene reaction (IMDAV) is a [4 + 2] cycloaddition that employs styrene derivatives as conjugated dienes, whose poor reactivity arises from the required loss of aromaticity, which is recovered by a subsequent [1,3]-H shift. Herein, we describe the use of cyclopropene as a dienophile, harnessing its strain energy to drive the IMDAV reaction. Benzonorcarane scaffolds form in good yields, excellent stereoselectivity, and broad functional tolerance.

View Article and Find Full Text PDF

Influenza virus infection remains a threat to human health since viral hemagglutinins are constantly drifting, escaping infection and vaccine-induced antibody responses. Viral hemagglutinins from different viruses display variability in glycan recognition. In this context, recent H3N2 viruses have specificity for α2,6 sialylated branched -glycans with at least three -acetyllactosamine units (tri-LacNAc).

View Article and Find Full Text PDF

A one pot alkenylation followed by a stereoselective Alder-ene cycloisomerization of cyclopropenes give (aza)spiro[2.4]heptanes and spiro[2.5]octanes in high yields.

View Article and Find Full Text PDF

High-fat diets enriched with lauric acid (SOLF) do not enhance leptin production despite expanding white adipose tissue (WAT). Our study aimed at identifying the influence of SOLF vs. oleic acid-enriched diets (UOLF) on the autoparacrine effect of leptin and was carried out on eight-week-old mice consuming control chow, UOLF or SOLF.

View Article and Find Full Text PDF

The synthesis of amides from thiols through a cobalt-catalyzed aminocarbonylation is shown. After optimizing all the reaction parameters, the methodology makes possible the obtention of amides with variable yields, while competing reactions such as the formation of disulfides and ureas can be limited. The process works well with aromatic thiols with electron donating groups (EDG) whereas other thiols give reaction with lower yields.

View Article and Find Full Text PDF

The use of flow methodology allows the use of alkynylphenyl vinyl ethers (benzo-fused 1,7 enynes) as substrates for the intramolecular Pauson-Khand reaction (PKr). Forced temperature and pressure conditions during a short reaction time minimize the substrate decomposition allowing the formation of the PK adduct. Substrates substituted at the internal position of the double bond and with internal triple bonds give better yields.

View Article and Find Full Text PDF

Ene-cyclopropenes give functionalized indanes and tetralines in the presence of ruthenium dimeric catalysts. This reaction involves the cyclopropene opening by the metal catalysts with a different regioselectivity respective to gold chlorides and produces totally different products than when using semisandwich ruthenium complexes. Here, the process leads to a bridged 7-oxanorbornene-type intermediate that is converted into a functionalized aromatic ring through deoxygenative aromatization.

View Article and Find Full Text PDF

Cyclopropanated iminosugars have a locked conformation that may enhance the inhibitory activity and selectivity against different glycosidases. We show the synthesis of new cyclopropane-containing piperidines bearing five stereogenic centers from natural amino acids l-serine and l-alanine. Those prepared from the latter amino acid may mimic l-fucose, a natural-occurring monosaccharide involved in many molecular recognition events.

View Article and Find Full Text PDF

Synthesis of four iminosugars fused to a cyclopropane ring is described using l-serine as the chiral pool. The key steps are large-scale preparation of an α,β-unsaturated piperidinone followed by completely stereoselective sulfur ylide cyclopropanation. Stereochemistry of compounds has been studied by nuclear Overhauser effect spectroscopy (NOESY) experiments and H homonuclear decoupling to measure constant couplings.

View Article and Find Full Text PDF

Continuous flow reactors form part of a rapidly growing research area that has changed the way synthetic chemistry is performed not only in academia but also at the industrial level. This Review highlights the most recent advances in cycloaddition reactions performed in flow systems. Cycloadditions are atom-efficient transformations for the synthesis of carbo- and heterocycles, involved in the construction of challenging skeletons of complex molecules.

View Article and Find Full Text PDF

A new synthesis of treprostinil is described using a plug flow reactor in two of the key steps. First, a Claisen rearrangement reaction is described in scaled flow at multigram amounts. Yields and selectivity of this step are sharply improved compared to those from previous syntheses.

View Article and Find Full Text PDF

The reaction of ene-cyclopropenes with Cp*RuCl(cod) leads to alkenyl bicyclo[3.1.0]hexanes, bicyclo[4.

View Article and Find Full Text PDF

Long-chain multiantenna N-glycans are extremely complex molecules. Their inherent flexibility and the presence of repetitions of monosaccharide units in similar chemical environments hamper their full characterization by X-ray diffraction or standard NMR methods. Herein, the successful conformational and interaction analysis of a sialylated tetradecasaccharide N-glycan presenting two LacNAc repetitions at each arm is presented.

View Article and Find Full Text PDF

Cobalt-catalyzed alkyne cyclotrimerization and crossed [2 + 2 + 2] cycloadditions are developed in a plug flow reactor. The protocol generally uses 5 mol % of Co(CO) and is scalable at least at multigram scale. Efficient and scalable use of Co(CO) for crossed reactions of diynes and alkynes has hardly any precedent.

View Article and Find Full Text PDF

The incorporation of plasma triglyceride (TG) fatty acids to white adipose tissue (WAT) depends on lipoprotein lipase (LPL), which is regulated by angiopoietin-like protein-4 (ANGPTL-4), an unfolding molecular chaperone that converts active LPL dimers into inactive monomers. The production of ANGPTL-4 is promoted by fasting and repressed by feeding. We hypothesized that the postprandial hormone cholecystokinin (CCK) facilitates the storage of dietary TG fatty acids in WAT by regulating the activity of the LPL/ANGPTL-4 axis and that it does so by acting directly on CCK receptors in adipocytes.

View Article and Find Full Text PDF

The biological recognition of complex-type N-glycans is part of many key physiological and pathological events. Despite their importance, the structural characterization of these events remains unsolved. The inherent flexibility of N-glycans hampers crystallization and the chemical equivalence of individual branches precludes their NMR characterization.

View Article and Find Full Text PDF

A catalytic, scalable intra- and intermolecular Pauson-Khand reaction protocol using generally 5 mol% of Co(CO) as the catalyst in a plug flow reactor (PFR) is shown.

View Article and Find Full Text PDF

Protein dynamics related to function can nowadays be structurally well characterized (i.e., instances obtained by high resolution structures), but they are still ill-defined energetically, and the energy landscapes are only accessible computationally.

View Article and Find Full Text PDF

Participation of alkenes and allenes in [2+2+2] cycloaddition reactions has attracted much attention recently. This version of the well-established alkyne cyclotrimerization renders interesting products, such as cyclohexadienes and other polycycles, through cascade processes. Many mechanistic variations are observed when using certain metal complexes as catalysts.

View Article and Find Full Text PDF

Attachment of human noroviruses to histo blood group antigens is thought to be essential for infection of host cells. Molecular details of the attachment process can be studied in vitro using a variety of NMR experiments. The use of protein NMR based experiments requires assignments of backbone NMR signals.

View Article and Find Full Text PDF

CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist.

View Article and Find Full Text PDF

Ruthenium carbene catalysts are able to catalyze cross [2 + 2 + 2] cyclotrimerizations of 1,6-diynes with cyclic and acyclic double bonds. A plausible mechanistic competition is described in which electron-deficient alkenes follow similar pathways as those of other ruthenium catalysts previously utilized and produce mixtures of trienes and cyclohexadienes. On the contrary, allylethers give different isomers of the same final products, suggesting that a metathetic cascade pathway operates in these cases.

View Article and Find Full Text PDF

The increasing interest in the functional versatility of glycan epitopes in cellular glycoconjugates calls for developing sensitive methods to define carbohydrate conformation in solution and to characterize protein-carbohydrate interactions. Measurements of pseudocontact shifts in the presence of a paramagnetic cation can provide such information. In this work, the energetically privileged conformation of a disaccharide (lactose as test case) was experimentally inferred by using a synthetic carbohydrate conjugate bearing a lanthanide binding tag.

View Article and Find Full Text PDF

Controlling NMR shifts by lanthanides tagged to a "symmetrical" N-glycan reveals individual resonances for the residues of the otherwise identical A and B arms. This method provides a global perspective of conformational features and interactions in solution.

View Article and Find Full Text PDF

Ruthenium carbene catalysts are able to catalyze crossed [2+2+2] cyclotrimerizations of α,ω-diynes with isocyanates, isothiocyanates, and carbon disulfide. Both aliphatic and aromatic isocyanates can be used to produce fused 2-pyridones, although aliphatic isocyanates were more reactive. Aromatic isocyanates give better results when they bear electron-donating substituents.

View Article and Find Full Text PDF