The design and study of efficient polymer-based drug delivery systems for the controlled release of anticancer drugs is one of the pillars of nanomedicine. The fight against metastatic and invasive cancers demands therapeutic candidates with increased and selective toxicity towards malignant cells, long-term activity and reduced side effects. In this sense, polyphosphazene nanocarriers were synthesized for the sustained release of the anticancer drugs camptothecin (CPT) and epirubicin (EPI).
View Article and Find Full Text PDFA water-soluble hydrolysate of silk fibroin (SF) (~30 kDa) was esterified with tocopherol, ergocalciferol, and testosterone to form SF aggregates for the controlled delivery of the anticancer drug camptothecin (CPT). Elemental analysis and H NMR spectroscopy showed a degree of substitution (DS) on SF of 0.4 to 3.
View Article and Find Full Text PDFThe synthesis and characterisation of novel polyphosphazene nanocarriers, based on hydrophilic polyalkylene oxide Jeffamine M1000 and hydrophobic steroids with a glycinate linker for pH-controlled release of diosgenin and two brassinosteroids (DI31 and S7) with agrochemical and potential anticancer activity, is hereby described. Polyphosphazenes carrying approximately 17 wt% of DI31 or S7 self-assembled in water to form 120-150 nm nanoaggregates, which showed an excellent plant growth effect on radish cotyledons due to sustained delivery of approximately 30% of the agrochemicals after 4 days. Cytotoxic evaluation showed that all polymers carrying steroids and Jeffamine M1000 resulted in strong to moderate toxicity to MCF-7 cancer cells and were non-toxic to primary human lung fibroblast cells at 0.
View Article and Find Full Text PDFCamptothecin (CPT), a potent anticancer drug with known antiviral activity, is halted of clinical use. Few drug delivery systems of CPT are approved for therapy. Hereby, we propose the encapsulation of hydrophobic CPT in the inner core of cellulose nanoaggregates for sustained release with retaining of antiproliferative activity.
View Article and Find Full Text PDFChitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(-acetylglucosamine). It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity.
View Article and Find Full Text PDFTwo synthetic analogues of brassinosteroids (DI31 and S7) exhibit good plant growth enhancer activity. However, their hydrophobicity and quick metabolism in plants have limited their application and benefits in agriculture. Our objective was to prepare novel brassinosteroid-modified polyethylene glycol (PEG) micelles to achieve controlled release with extended stability while retaining agrochemical activity.
View Article and Find Full Text PDFCommercial sodium hyaluronate (HA) and synthetic hydrazide-modified HA were functionalized with diosgenin and two agrochemicals (brassinosteroids DI31 and S7) with degree of substitution ranging from 5.6 to 13.1%.
View Article and Find Full Text PDFSynthetic O6-succinylated chitosan and commercial glycol chitosan were covalently linked to dl-α-tocopheryl monoesters for controlled release of vitamin E. These conjugates formed self-assembled nanoparticles in aqueous solution with 254-496 nm mean diameters and dl-α-tocopherol contents between 27 and 39% (w/w). The particles appeared as 40-75 nm almost spherical nanoparticles when studied by scanning and transmission electron microscopy upon drying.
View Article and Find Full Text PDFDiosgenin, two synthetic analogs of brassinosteroids, testosterone and dl-α-tocopherol were covalently linked to synthetic water-soluble N,O6-partially acetylated chitosan, for their controlled release. Drug linking was confirmed by FTIR spectroscopy and proton NMR. Conjugates were also characterized by differential scanning calorimetry and wide-angle X-ray diffraction.
View Article and Find Full Text PDF