A new family of antifibrinolytic drugs has been recently discovered, combining a triazole moiety, an oxadiazolone, and a terminal amine. Two of the molecules of this family have shown activity that is greater than or similar to that of tranexamic acid (TXA), the current antifibrinolytic gold standard, which has been associated with several side effects and whose use is limited in patients with renal impairment. The aim of this work was to thoroughly examine the mechanism of action of the two ideal candidates of the 1,2,3-triazole family and compare them with TXA, to identify an antifibrinolytic alternative active at lower dosages.
View Article and Find Full Text PDFFibrinolysis is a natural process that ensures blood fluidity through the removal of fibrin deposits. However, excessive fibrinolytic activity can lead to complications in different circumstances, such as general surgery or severe trauma. The current antifibrinolytic drugs in the market, aminocaproic acid (EACA) and tranexamic acid (TXA), require high doses repetitively to maintain their therapeutic effect.
View Article and Find Full Text PDFJ Cardiovasc Med (Hagerstown)
December 2006
Objective: Licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid) has been demonstrated to inhibit cyclooxygenase (COX)-1, COX-2, and 5-lipoxygenase. The aim of this study was to investigate the in-vitro effects of licofelone on platelet function. Effects observed were compared with those produced by the classic COX-1 inhibitor aspirin (ASA).
View Article and Find Full Text PDF