Accumulation of amyloid-β peptide (Aβ) aggregates in synapses may contribute to the profound synaptic loss characteristic of Alzheimer's disease (AD). The origin of synaptic Aβ aggregates remains elusive, but loss of endosomal proteostasis may trigger their formation. In this study, we identified the synaptic compartments where Aβ accumulates, and performed a longitudinal analysis of synaptosomes isolated from brains of TgCRND8 APP transgenic mice of either sex.
View Article and Find Full Text PDFPleiotropic roles are proposed for brain extracellular vesicles (EVs) in the development of Alzheimer's disease (AD). Our previous studies have suggested a beneficial role for EVs in AD, where the endosomal system in vulnerable neurons is compromised, contributing to the removal of accumulated material from neurons. However, the involvement of EVs in propagating AD amyloidosis throughout the brain has been considered because the amyloid-β precursor protein (APP), APP metabolites, and key APP cleaving enzymes were identified in association with EVs.
View Article and Find Full Text PDFBackground: Demonstration of intrathecal production of Borrelia-specific antibodies (ITAb) is considered the most specific diagnostic marker of Lyme neuroborreliosis (LNB). Limitations include delayed detectability in early infection and continued presence long after successful treatment. Markers of active inflammation-increased cerebrospinal fluid (CSF) leukocytes, protein, and CXCL13-provide nonspecific markers of active infection.
View Article and Find Full Text PDFAccumulating evidence suggests that the abnormal aggregation of amyloid-β (Αβ) peptide in Alzheimer's disease (AD) begins intraneuronally, within vesicles of the endosomal-lysosomal pathway where Aβ is both generated and degraded. Metalloproteases, including endothelin-converting enzyme (ECE)-1 and -2, reside within these vesicles and normally limit the accumulation of intraneuronally produced Aβ. In this study, we determined whether disruption of Aβ catabolism could trigger Aβ aggregation within neurons and increase the amount of Aβ associated with exosomes, small extracellular vesicles derived from endosomal multivesicular bodies.
View Article and Find Full Text PDFBackground: Lyme encephalopathy, characterized by nonspecific neurobehavioral symptoms including mild cognitive difficulties, may occur in patients with systemic Lyme disease and is often mistakenly attributed to central nervous system (CNS) infection. Identical symptoms occur in many inflammatory states, possibly reflecting the effect of systemic immune mediators on the CNS.
Methods: Multiplex immunoassays were used to measure serum and cerebrospinal fluid (CSF) cytokines in patients with or without Lyme disease to determine if there are specific markers of active CNS infection (neuroborreliosis), or systemic inflammatory mediators associated with neurobehavioral syndromes.
Impaired clearance of amyloid-β peptide (Aβ) has been postulated to significantly contribute to the amyloid accumulation typical of Alzheimer's disease. Among the enzymes known to degrade Aβ in vivo are endothelin-converting enzyme (ECE)-1, ECE-2, and neprilysin (NEP), and evidence suggests that they regulate independent pools of Aβ that may be functionally significant. To better understand the differential regulation of Aβ concentration by its physiological degrading enzymes, we characterized the cell and region-specific expression pattern of ECE-1, ECE-2, and NEP by in situ hybridization and immunohistochemistry in brain areas relevant to Alzheimer's disease.
View Article and Find Full Text PDFEvidence has shown that lymphatic drainage contributes to removal of debris from the brain but its role in the accumulation of amyloid β peptides (Aβ) has not been demonstrated. We examined the levels of various forms of Aβ in the brain, plasma and lymph nodes in a transgenic model of Alzheimer's disease (AD) at different ages. Herein, we report on the novel finding that Aβ is present in the cervical and axillary lymph nodes of AD transgenic mice and that Aβ levels in lymph nodes increase over time, mirroring the increase of Aβ levels observed in the brain.
View Article and Find Full Text PDFBACE1 (β-secretase) and α-secretase cleave the Alzheimer's amyloid β protein (Aβ) precursor (APP) to C-terminal fragments of 99 aa (CTFβ) and 83 aa (CTFα), respectively, which are further cleaved by γ-secretase to eventually secrete Aβ and Aα (a.k.a.
View Article and Find Full Text PDFImpairments in Aβ removal are increasingly being considered as a possible cause for the abnormal Aβ build-up typical of Alzheimer disease. Of particular interest is a pool of Aβ that accumulates intraneuronally and may contribute to neuronal toxicity. The mechanism for intraneuronal accumulation, however, is not well understood and is commonly attributed to impaired removal of extracellular Aβ by neurons.
View Article and Find Full Text PDFThe efficient clearance of amyloid-β (Aβ) is essential to modulate levels of the peptide in the brain and to prevent it from accumulating in senile plaques, a hallmark of Alzheimer's disease (AD) pathology.We and others have shown that failure in Aβ catabolism can produce elevations in Aβ concentration similar to those observed in familial forms of AD. Based on the available evidence, it remains plausible that in late-onset AD, disturbances in the activity of Aβ degrading enzymes could induce Aβ accumulation, and that this increase could result in AD pathology.
View Article and Find Full Text PDFRecent epidemiological and clinical data suggest that elevated serum homocysteine levels may increase the risk of developing Alzheimer's disease (AD), but the underlying mechanisms are unknown. We tested the hypothesis that high serum homocysteine concentration may increase amyloid beta-peptide (Abeta) levels in the brain and could therefore accelerate AD neuropathology. For this purpose, we mated a hyperhomocysteinemic CBS(tm1Unc) mouse carrying a heterozygous dominant mutation in cystathionine-beta-synthase (CBS*) with the APP*/PS1* mouse model of brain amyloidosis.
View Article and Find Full Text PDFIncreased levels of a 40-42 amino-acid peptide called the amyloid beta protein (A beta) and evidence of oxidative damage are early neuropathological markers of Alzheimer's disease (AD). Previous investigations have demonstrated that melatonin is decreased during the aging process and that patients with AD have more profound reductions of this hormone. It has also been recently shown that melatonin protects neuronal cells from A beta-mediated oxidative damage and inhibits the formation of amyloid fibrils in vitro.
View Article and Find Full Text PDF