Nowadays, considering society's highly demanding lifestyles, it is important to consider the usefulness of relaxation from the perspective of both psychology and clinical practice. The response towards relaxation (RResp) is a mind-body interaction that relaxes the organism or compensates for the physiological effects caused by stress. This work aims to automatically detect the different mental states (relaxation, rest and stress) in which RResps may occur so that complete feedback about the quality of the relaxation can be given to the subject itself, the psychologist or the doctor.
View Article and Find Full Text PDFDeep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ.
View Article and Find Full Text PDFThe digital divide in Europe has not yet been bridged and thus more contributions towards understanding the factors affecting the different dimensions involved are required. This research offers some insights into the topic by analyzing the e-Government adoption or practical use of e-Government across Europe (26 EU countries). Based on the data provided by the statistical office of the European Union (Eurostat), we defined two indexes, the E-Government Use Index (EGUI) and an extreme version of it taking into account only null or complete use (EGUI+), and characterized the use/non use of e-Government tools using supervised learning procedures in a selection of countries with different e-Government adoption levels.
View Article and Find Full Text PDFObjective: To characterise the use of an electronic medication safety dashboard by exploring and contrasting interactions from primary users (i.e. pharmacists) who were leading the intervention and secondary users (i.
View Article and Find Full Text PDFA brain-computer interface (BCI), based on motor imagery EEG, uses information extracted from the electroencephalography signals generated by a person who intends to perform any action. One of the most important issues of current research is how to detect automatically whether the user intends to send some message to a certain device. This study presents a proposal, based on a hierarchical structured system, for recognising intentional and non-intentional mental tasks on a BCI system by applying machine learning techniques to the EEG signals.
View Article and Find Full Text PDFThe monitoring of small houses and rooms has become possible due to the advances in IoT sensors, actuators and low power communication protocols in the last few years. As buildings are one of the biggest energy consuming entities, monitoring them has great interest for trying to avoid non-necessary energy waste. Moreover, human behaviour has been reported as being the main discrepancy source between energy usage simulations and real usage, so the ability to monitor and predict actions as opening windows, using rooms, etc.
View Article and Find Full Text PDFWe present an analysis of different methods to calculate the classical electrostatic Hartree potential created by charge distributions. Our goal is to provide the reader with an estimation on the performance-in terms of both numerical complexity and accuracy-of popular Poisson solvers, and to give an intuitive idea on the way these solvers operate. Highly parallelizable routines have been implemented in a first-principle simulation code (Octopus) to be used in our tests, so that reliable conclusions about the capability of methods to tackle large systems in cluster computing can be obtained from our work.
View Article and Find Full Text PDFOctopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time.
View Article and Find Full Text PDF