Publications by authors named "Javier Movellan"

Differentiating the ability from the motivation to act is of central importance to psychiatric disorders in general and depression in particular. However, it has been difficult to develop quantitative approaches to relate depression to poor motor performance in goal-directed tasks. Here, we use an inverse optimal control approach to provide a computational framework that can be used to infer and factorize performance deficits into three components: sensorimotor speed, goal setting and motivation.

View Article and Find Full Text PDF

Dysfunctions of approach and avoidance motivation play an important role in depression, which in turn may affect cognitive control, i.e., the ability to regulate thoughts and action to achieve internal goals.

View Article and Find Full Text PDF

One of the earliest forms of interaction between mothers and infants is smiling games. While the temporal dynamics of these games have been extensively studied, they are still not well understood. Why do mothers and infants time their smiles the way they do? To answer this question we applied methods from control theory, an approach frequently used in robotics, to analyze and synthesize goal-oriented behavior.

View Article and Find Full Text PDF

Heart Rate Variability (HRV) is an indicator of health status in the general population and of adaptation to stress in athletes. In this paper we compare the performance of two systems to measure HRV: (1) A commercial system based on recording the physiological cardiac signal with (2) A computer vision system that uses a standard video images of the face to estimate RR from changes in skin color of the face. We show that the computer vision system performs surprisingly well.

View Article and Find Full Text PDF

Social roboticists design their robots to function as social agents in interaction with humans and other robots. Although we do not deny that the robot's design features are crucial for attaining this aim, we point to the relevance of spatial organization and coordination between the robot and the humans who interact with it. We recover these interactions through an observational study of a social robotics laboratory and examine them by applying a multimodal interactional analysis to two moments of robotics practice.

View Article and Find Full Text PDF

The ability to detect social contingencies plays an important role in the social and emotional development of infants. Analyzing this problem from a computational perspective may provide important clues for understanding social development, as well as for the synthesis of social behavior in robots. In this paper, we show that the turn-taking behaviors observed in infants during contingency detection situations are tuned to optimally gather information as to whether a person is responsive to them.

View Article and Find Full Text PDF

We present a generative model and inference algorithm for 3D nonrigid object tracking. The model, which we call G-flow, enables the joint inference of 3D position, orientation, and nonrigid deformations, as well as object texture and background texture. Optimal inference under G-flow reduces to a conditionally Gaussian stochastic filtering problem.

View Article and Find Full Text PDF

Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions.

View Article and Find Full Text PDF

Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction.

View Article and Find Full Text PDF

This letter presents an analysis of the contrastive divergence (CD) learning algorithm when applied to continuous-time linear stochastic neural networks. For this case, powerful techniques exist that allow a detailed analysis of the behavior of CD. The analysis shows that CD converges to maximum likelihood solutions only when the network structure is such that it can match the first moments of the desired distribution.

View Article and Find Full Text PDF

A state-of-the-art social robot was immersed in a classroom of toddlers for >5 months. The quality of the interaction between children and robots improved steadily for 27 sessions, quickly deteriorated for 15 sessions when the robot was reprogrammed to behave in a predictable manner, and improved in the last three sessions when the robot displayed again its full behavioral repertoire. Initially, the children treated the robot very differently than the way they treated each other.

View Article and Find Full Text PDF

Neural models of contextual integration typically incorporate a mean firing rate representation. We examine representation of the full spike count distribution, and its usefulness in explaining contextual integration of color stimuli in primary visual cortex. Specifically, we demonstrate that a factorizable model conditioned on the number of spikes can account for both the onset and sustained portions of the response.

View Article and Find Full Text PDF

We present a Monte Carlo approach for training partially observable diffusion processes. We apply the approach to diffusion networks, a stochastic version of continuous recurrent neural networks. The approach is aimed at learning probability distributions of continuous paths, not just expected values.

View Article and Find Full Text PDF