Publications by authors named "Javier Moreno-Farre"

Purpose: A phase I study to define toxicity and recommend a phase II dose of the HSP90 inhibitor alvespimycin (17-DMAG; 17-dimethylaminoethylamino-17-demethoxygeldanamycin). Secondary endpoints included evaluation of pharmacokinetic profile, tumor response, and definition of a biologically effective dose (BED).

Patients And Methods: Patients with advanced solid cancers were treated with weekly, intravenous (i.

View Article and Find Full Text PDF

We describe the design, synthesis, and optimization of a series of new inhibitors of V-RAF murine sarcoma viral oncogene homologue B1 (BRAF), a kinase whose mutant form (V600E) is implicated in several types of cancer, with a particularly high frequency in melanoma. Our previously described inhibitors with a tripartite A-B-C system (where A is a hinge binding pyrido[4,5-b]imidazolone system, B is an aryl spacer group, and C is a heteroaromatic group) were potent against purified (V600E)BRAF in vitro but were less potent in accompanying cellular assays. Substitution of different aromatic heterocycles for the phenyl based C-ring is evaluated herein as a potential means of improving the cellular potencies of these inhibitors.

View Article and Find Full Text PDF

BRAF is a serine/threonine kinase that is mutated in a range of cancers, including 50-70% of melanomas, and has been validated as a therapeutic target. We have designed and synthesized mutant BRAF inhibitors containing pyridoimidazolone as a new hinge-binding scaffold. Compounds have been obtained which have low nanomolar potency for mutant BRAF (12 nM for compound 5i) and low micromolar cellular potency against a mutant BRAF melanoma cell line, WM266.

View Article and Find Full Text PDF

An accurate, sensitive, robust and selective liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin hydrochloride (17-DMAG) in human plasma has been developed and validated. Plasma samples were prepared by liquid/liquid extraction with ethyl acetate. The chromatographic separation was achieved within 9 min on a Synergy Polar column with a linear gradient and a mobile phase consisting of methanol and 0.

View Article and Find Full Text PDF