Publications by authors named "Javier Monroy"

The ability to sense airborne pollutants with mobile robots provides a valuable asset for domains such as industrial safety and environmental monitoring. Oftentimes, this involves detecting how certain gases are spread out in the environment, commonly referred to as a gas distribution map, to subsequently take actions that depend on the collected information. Since the majority of gas transducers require physical contact with the analyte to sense it, the generation of such a map usually involves slow and laborious data collection from all key locations.

View Article and Find Full Text PDF

This paper proposes , a method for building object-oriented semantic maps that remain consistent in the long-term operation of mobile robots. Among the different challenges that compromise this aim, focuses on two of the more relevant ones: preventing duplicate instances of objects (instance duplication) and handling dynamic scenes. The former refers to creating multiple instances of the same physical object in the map, usually as a consequence of partial views or occlusions.

View Article and Find Full Text PDF

The integration of Ambient Assisted Living (AAL) frameworks with Socially Assistive Robots (SARs) has proven useful for monitoring and assisting older adults in their own home. However, the difficulties associated with long-term deployments in real-world complex environments are still highly under-explored. In this work, we first present the MoveCare system, an unobtrusive platform that, through the integration of a SAR into an AAL framework, aimed to monitor, assist and provide social, cognitive, and physical stimulation in the own houses of elders living alone and at risk of falling into frailty.

View Article and Find Full Text PDF

The simulation of how a gas disperses in a environment is a necessary asset for the development of olfaction-based autonomous agents. A variety of simulators already exist for this purpose, but none of them allows for a sufficiently convenient integration with other types of sensing (such as vision), which hinders the development of advanced, multi-sensor olfactory robotics applications. In this work, we present a framework for the simulation of gas dispersal and sensing alongside vision by integrating GADEN, a state-of-the-art Gas Dispersion Simulator, with the Unity 3D, a video game development engine that is used in many different areas of research and helps with the creation of visually realistic, complex environments.

View Article and Find Full Text PDF

In domestic robotics, passing through narrow areas becomes critical for safe and effective robot navigation. Due to factors like sensor noise or miscalibration, even if the free space is sufficient for the robot to pass through, it may not see enough clearance to navigate, hence limiting its operational space. An approach to facing this is to insert waypoints strategically placed within the problematic areas in the map, which are considered by the robot planner when generating a trajectory and help to successfully traverse them.

View Article and Find Full Text PDF

Olfaction is a valuable source of information about the environment that has not been sufficiently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g.

View Article and Find Full Text PDF

This paper addresses the localization of a gas emission source within a real-world human environment with a mobile robot. Our approach is based on an efficient and coherent system that fuses different sensor modalities (i.e.

View Article and Find Full Text PDF

This work presents a simulation framework developed under the widely used Robot Operating System (ROS) to enable the validation of robotics systems and gas sensing algorithms under realistic environments. The framework is rooted in the principles of computational fluid dynamics and filament dispersion theory, modeling wind flow and gas dispersion in 3D real-world scenarios (i.e.

View Article and Find Full Text PDF

Metal Oxide Semiconductor (MOX) gas transducers are one of the preferable technologies to build electronic noses because of their high sensitivity and low price. In this paper we present an approach to overcome to a certain extent one of their major disadvantages: their slow recovery time (tens of seconds), which limits their suitability to applications where the sensor is exposed to rapid changes of the gas concentration. Our proposal consists of exploiting a double first-order model of the MOX-based sensor from which a steady-state output is anticipated in real time given measurements of the transient state signal.

View Article and Find Full Text PDF

One of the major disadvantages of the use of Metal Oxide Semiconductor (MOS) technology as a transducer for electronic gas sensing devices (e-noses) is the long recovery period needed after each gas exposure. This severely restricts its usage in applications where the gas concentrations may change rapidly, as in mobile robotic olfaction, where allowing for sensor recovery forces the robot to move at a very low speed, almost incompatible with any practical robot operation. This paper describes the design of a new e-nose which overcomes, to a great extent, such a limitation.

View Article and Find Full Text PDF