Background: Endothelial colony forming cells (ECFCs), alone or in combination with mesenchymal stem cells, have been selected as potential therapeutic candidates for critical limb-threatening ischemia (CLTI), mainly for those patients considered as "no-option," due to their capability to enhance revascularization and perfusion recovery of ischemic tissues. Nevertheless, prior to translating cell therapy to the clinic, biodistribution assays are required by regulatory guidelines to ensure biosafety as well as to discard undesired systemic translocations. Different approaches, from imaging technologies to qPCR-based methods, are currently applied.
View Article and Find Full Text PDFBone Marrow Mononuclear Cells (BM-MNC) constitute a promising alternative for the treatment of Chronic Limb-Threatening ischemia (CLTI), a disease characterized by extensive blockade of peripheral arteries, clinically presenting as excruciating pain at rest and ischemic ulcers which may lead to gangrene and amputation. BM-MNC implantation has shown to be efficient in promoting angiogenesis and ameliorating ischemic symptoms in CLTI patients. However, the variability seen between clinical trials makes necessary a further understanding of the mechanisms of action of BM-MNC, and moreover, to improve trial characteristics such as endpoints, inclusion/exclusion criteria or drug product compositions, in order to implement their use as stem-cell therapy.
View Article and Find Full Text PDFBackground: To study the regenerative capacity of the endothelium in patients with coronary artery disease (CAD), we cultured blood outgrowth endothelial cells (BOECs) of patients with premature CAD and their first degree relatives (FDR). Additionally we evaluated the influence of statin treatment on circulating BOEC precursors in subjects with subclinical atherosclerosis.
Methods And Results: Patients with premature CAD (men <51 yr, women <56 yr) and their FDRs were included.
Extensive analysis of a variety of arthritis models in germline KO mice has revealed that all four receptors for the Fc part of IgG (FcγR) play a role in the disease process. However, their precise cell type-specific contribution is still unclear. In this study, we analyzed the specific role of the inhibiting FcγRIIb on B lymphocytes (using CD19Cre mice) and in the myeloid cell compartment (using C/EBPαCre mice) in the development of arthritis induced by immunization with either bovine or chicken collagen type II.
View Article and Find Full Text PDFFcγRIIb is the sole inhibitory FcR for IgG in humans and mice, where it is involved in the negative regulation of Ab production and cellular activation. FcγRIIb-deficient mice show exacerbated disease following the induction of nephrotoxic nephritis (NTN). In this study, we determined the cellular origin of the FcγRIIb-knockout phenotype by inducing NTN in mice with a deficiency of FcγRIIb on either B cells alone (FcγRIIB(fl/fl)/CD19Cre(+)) or myeloid cells (FcγRIIB(fl/fl)/CEBPαCre(+)).
View Article and Find Full Text PDFBlood outgrowth endothelial cells (BOECs) are important tools when investigating diagnostic and therapeutic approaches for vascular disease. In this protocol, mononuclear cells are isolated from peripheral blood and plated on type I collagen at ∼135,000 cells per cm(2) in endothelial cell differentiation medium. On average, 0.
View Article and Find Full Text PDFFcgamma receptor 2b (Fcgr2b) is the only inhibitory Fcgamma receptor in both humans and mice, and is implicated in both antibody production and effector responses to antibody complexes. Reduced function of Fcgr2b has previously been associated with anti-glomerular basement membrane antibody (anti-GBM) disease in mice. However, the mice used had 129 genetic elements flanking the deleted Fcgr2b gene, which are known to increase susceptibility to autoimmunity.
View Article and Find Full Text PDFFcγRIIB-deficient mice generated in 129 background (FcγRIIB(129)(-/-)) if back-crossed into C57BL/6 background exhibit a hyperactive phenotype and develop lethal lupus. Both in mice and humans, the Fcγr2b gene is located within a genomic interval on chromosome 1 associated with lupus susceptibility. In mice, the 129-derived haplotype of this interval, named Sle16, causes loss of self-tolerance in the context of the B6 genome, hampering the analysis of the specific contribution of FcγRIIB deficiency to the development of lupus in FcγRIIB(129)(-/-) mice.
View Article and Find Full Text PDFFc receptors for IgG (FcgammaR) have been implicated in the development of arthritis. However, the precise contribution of the individual FcgammaR to joint pathology is unclear. In this study, the role of the different FcgammaR was assessed both in an active and in a passive mouse model of arthritis by analyzing disease development in double and triple knockout (KO) offspring from crosses of FcgammaRI KO, FcgammaRIII KO, FcgammaRI/III double KO, or FcR gamma-chain KO with the FcgammaRII KO on C57BL6 background, which is susceptible for collagen-induced arthritis (CIA).
View Article and Find Full Text PDF