Dielectrophoresis (DEP) is the motion of particles due to polarization effects in nonuniform electric fields. DEP has great potential for handling cells and is a non-destructive phenomenon. It has been utilized for different cell analysis, from viability assessments to concentration enrichment and separation.
View Article and Find Full Text PDFA lab-on-a-chip device is described for continuous sorting of fluorescent polystyrene microparticles utilizing direct current insulating dielectrophoresis (DC-iDEP) at lower voltages than previously reported. Particles were sorted by combining electrokinetics and dielectrophoresis in a 250 μm wide PDMS microchannel containing a rectangular insulating obstacle and four outlet channels. The DC-iDEP particle flow behaviors were investigated with 3.
View Article and Find Full Text PDFLow frequency alternating current insulator-based dielectrophoresis is a novel technique that allows for highly controlled manipulation of particles. By varying the shape of an AC voltage applied across a microchannel containing an array of insulating cylindrical structures it was possible to concentrate and immobilize microparticles in bands; and then, move the bands of particles to a different location. Mathematical modeling was performed to analyze the distribution of the electric field and electric field gradient as function of the shape of the AC applied potential, employing frequencies in the 0.
View Article and Find Full Text PDFThis paper is the first report on the characterization of the hydrodynamic conditions in a flow cell designed to study adsorption processes by spectroscopic ellipsometry. The resulting cell enables combining the advantages of in situ spectroscopic ellipsometry with stagnation point flow conditions. An additional advantage is that the proposed cell features a fixed position of the "inlet tube" with respect to the substrate, thus facilitating the alignment of multiple substrates.
View Article and Find Full Text PDFA mathematical model is implemented to study the performance of an insulator-based dielectrophoretic device. The geometry of the device was captured in a computational model that solves Laplace equation within an array of cylindrical insulating structures. From the mathematical model it was possible to predict the location and magnitude of the zones of dielectrophoretic trapping of microparticles.
View Article and Find Full Text PDFInsulator-based dielectrophoresis (iDEP), an efficient technique with great potential for miniaturization, has been successfully applied for the manipulation of a wide variety of bioparticles. When iDEP is applied employing direct current (DC) electric fields, other electrokinetic transport mechanisms are present: electrophoresis and electroosmotic flow. In order to concentrate particles, iDEP has to overcome electrokinetics.
View Article and Find Full Text PDF