Acoustic metamaterials are becoming promising solutions for many industry applications, but the gap between theory and practice is still difficult to close. This research proposes an optimization methodology of acoustic metamaterial designs for sound insulation that aims to start bridging this gap. The proposed methodology takes advantage of a hybrid analytical-numerical approach for computing the sound transmission loss of the designs efficiently.
View Article and Find Full Text PDFAcoustic metamaterials (AM) have emerged as an academic discipline within the last decade. When used for sound insulation, metamaterials can show high transmission loss at low frequencies, despite having low mass per unit area. This paper investigates the possibility of using AMs to increase the sound insulation of finite single leaf walls (SLWs), focusing on the coincidence effect problem.
View Article and Find Full Text PDF