Ultrasound in combination with the introduction of microbubbles into the vasculature effectively opens the blood brain barrier (BBB) to allow the passage of therapeutic agents. Increased permeability of the BBB is typically demonstrated with small-molecule agents (e.g.
View Article and Find Full Text PDFBackground: Essential tremor (ET) is one of the most common movement disorders of adults, characterized by postural and kinetic tremor. With drug treatment only partially efficient, new treatments are being developed.
Objectives: The goal of this study was to demonstrate the feasibility of non-thermal focused-ultrasound (FUS) to induce tremor-suppression in an ET rat model.
The goal of this study was to determine the feasibility of focused ultrasound-based neuromodulation affecting auditory evoked potentials (AEPs) in animals. Focused ultrasound-induced suppression of AEPs was performed in 22 rats and 5 pigs: Repetitive sounds were produced, and the induced AEPs were recorded before and repeatedly after FUS treatment of the auditory pathway. All treated animals exhibited a decrease in AEP amplitude post-treatment in contrast to animals undergoing the sham treatment.
View Article and Find Full Text PDFBackground: Because of the paucity of effective treatments for intracranial hemorrhage (ICH), the mortality rate remains at 40%-60%. A novel application of magnetic resonance-guided focused ultrasound (MRgFUS) for ICH may offer an alternative noninvasive treatment through the precise delivery of FUS under real-time MR imaging (MRI) guidance. The purpose of the present study was to optimize the parameters for rapid, effective, and safe trans-skull large clot liquefaction using in vivo porcine and ex vivo human skull models to provide a clinically relevant proof of concept.
View Article and Find Full Text PDFStanding waves play a significant role in the appearance of cavitation phenomena. The goal of this study was to investigate the effect that the relation between standing and propagating waves in a focused field has on acoustic bubble cloud formation. Measurements of the cavitation signals were performed on five different configurations of a hemispheric phased array transducer (230 kHz) representing a wide range of relations between propagating and standing waves.
View Article and Find Full Text PDF