Publications by authors named "Javier Garcia-Nafria"

Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity and improve current medications by reducing off-target side effects. However, the lack of structural information on their binding mode impedes rational design.

View Article and Find Full Text PDF

Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity, driven by the binding of the secondary pharmacophore to non-conserved regions of the receptor. Although bitopic ligands have great potential to improve current medications by reducing off-target side effects, the lack of structural information on their binding mode impedes rational design.

View Article and Find Full Text PDF

The neuronal calcium sensor 1 (NCS-1), an EF-hand Ca binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Gα have revealed how Ric-8A phosphorylation promotes Gα recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Gα subunits is not well understood.

View Article and Find Full Text PDF

Over the past three years (2020-2022) more structures of GPCRs have been determined than in the previous twenty years (2000-2019), primarily of GPCR complexes that are large enough for structure determination by single-particle cryo-EM. This review will present some structural highlights that have advanced our molecular understanding of promiscuous G protein coupling, how a G protein receptor kinase and β-arrestins couple to GPCRs, and GPCR dimerisation. We will also discuss advances in the use of gene fusions, nanobodies, and F fragments to facilitate the structure determination of GPCRs in the inactive state that, on their own, are too small for structure determination by single-particle cryo-EM.

View Article and Find Full Text PDF

Here we describe the in vivo DNA assembly approach, where molecular cloning procedures are performed using an E. coli recA-independent recombination pathway, which assembles linear fragments of DNA with short homologous termini. This pathway is present in all standard laboratory E.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are the largest single family of cell surface receptors encoded by the human genome and they play pivotal roles in co-ordinating cellular systems throughout the human body, making them ideal drug targets. Structural biology has played a key role in defining how receptors are activated and signal through G proteins and β-arrestins. The application of structure-based drug design (SBDD) is now yielding novel compounds targeting GPCRs.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) is one of the most common genetic disorders in humans. It is an extremely atherogenic metabolic disorder characterized by lifelong elevations of circulating LDL-C levels often leading to premature cardiovascular events. In this review, we discuss the clinical phenotypes of heterozygous and homozygous FH, the genetic variants in four genes (LDLR/APOB/PCSK9/LDLRAP1) underpinning the FH phenotype as well as the most recent in vitro experimental approaches used to investigate molecular defects affecting the LDL receptor pathway.

View Article and Find Full Text PDF

The β-adrenoceptor (βAR) is a G-protein-coupled receptor (GPCR) that couples to the heterotrimeric G protein G. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of β-arrestin 1 (βarr1, also known as arrestin 2), which displaces G and induces signalling through the MAP kinase pathway. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects.

View Article and Find Full Text PDF

The self-assembly of the protein clathrin on biological membranes facilitates essential processes of endocytosis and has provided a source of inspiration for materials design by the highly ordered structural appearance. By mimicking the architecture of the protein building blocks and clathrin self-assemblies to coat liposomes with biomaterials, advanced hybrid carriers can be derived. Here, we present a method for fabricating DNA-coated liposomes by hydrophobically anchoring and subsequently connecting DNA-based triskelion structures on the liposome surface inspired by the assembly of the protein clathrin.

View Article and Find Full Text PDF

Molecular cloning is a cornerstone of biomedical, biotechnological, and synthetic biology research. As such, improved cloning methodologies can significantly advance the speed and cost of research projects. Whereas current popular cloning approaches use assembly of DNA fragments, cloning offers potential for greater simplification.

View Article and Find Full Text PDF

Electron cryo-microscopy (cryo-EM) has revolutionized structure determination of membrane proteins and holds great potential for structure-based drug discovery. Here we discuss the potential of cryo-EM in the rational design of therapeutics for membrane proteins compared to X-ray crystallography. We also detail recent progress in the field of drug receptors, focusing on cryo-EM of two protein families with established therapeutic value, the γ-aminobutyric acid A receptors (GABARs) and G protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

Advances in electron cryo-microscopy (cryo-EM) now permit the structure determination of G protein-coupled receptors (GPCRs) coupled to heterotrimeric G proteins by single-particle imaging. A combination of G protein engineering and the development of antibodies that stabilise the heterotrimeric G protein facilitate the formation of stable GPCR-G protein complexes suitable for structural biology. Structures have been determined of GPCRs coupled to either heterotrimeric G proteins (G, G or G) or mini-G proteins (mini-G or mini-G) by single-particle cryo-EM and X-ray crystallography, respectively.

View Article and Find Full Text PDF

AMPA-type glutamate receptors (AMPARs) mediate excitatory neurotransmission and are central regulators of synaptic plasticity, a molecular mechanism underlying learning and memory. Although AMPARs act predominantly as heteromers, structural studies have focused on homomeric assemblies. Here, we present a cryo-electron microscopy structure of the heteromeric GluA1/2 receptor associated with two transmembrane AMPAR regulatory protein (TARP) γ8 auxiliary subunits, the principal AMPAR complex at hippocampal synapses.

View Article and Find Full Text PDF

The calcitonin receptor (CTR) is a class B G protein-coupled receptor (GPCR) that responds to the peptide hormone calcitonin (CT). CTs are clinically approved for the treatment of bone diseases. We previously reported a 4.

View Article and Find Full Text PDF

Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission in the brain. Their dysfunction is implicated in many neurological disorders, rendering iGluRs potential drug targets. Here, we performed a systematic analysis of the druggability of two major iGluR subfamilies, using molecular dynamics simulations in the presence of drug-like molecules.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins.

View Article and Find Full Text PDF

Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME.

View Article and Find Full Text PDF

The adenosine A receptor (AR) is a prototypical G protein-coupled receptor (GPCR) that couples to the heterotrimeric G protein G. Here, we determine the structure by electron cryo-microscopy (cryo-EM) of AR at pH 7.5 bound to the small molecule agonist NECA and coupled to an engineered heterotrimeric G protein, which contains mini-G, the βγ subunits and nanobody Nb35.

View Article and Find Full Text PDF

In vivo homologous recombination holds the potential for optimal molecular cloning, however, current strategies require specialised bacterial strains or laborious protocols. Here, we exploit a recA-independent recombination pathway, present in widespread laboratory E.coli strains, to develop IVA (In Vivo Assembly) cloning.

View Article and Find Full Text PDF

AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis.

View Article and Find Full Text PDF

Ionotropic glutamate receptors (iGluRs) are tetrameric ion channels that mediate excitatory neurotransmission. Recent structures of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors permit a comparative analysis of whole-receptor dynamics for the first time. Despite substantial differences in the packing of their two-domain extracellular region, the two iGluRs share similar dynamics, elucidated by elastic network models.

View Article and Find Full Text PDF

Homotrimeric dUTPases contain three active sites, each formed by five conserved sequence motifs originating from all three subunits. The essential fifth motif lies in a flexible C-terminal arm which becomes ordered during catalysis and is disordered in most crystal structures. Previously, it has been shown that the two Bacillus subtilis dUTPases, YncF and YosS, differ from their orthologues in the position in the sequence of the essential Phe-lid residue, which stacks against the uracil base, and in the conformation of the general base aspartate, which points away from the active site.

View Article and Find Full Text PDF

Corynebacterium glutamicum is an important industrial bacterium as well as a model organism for the order Corynebacteriales, whose citric acid cycle occupies a central position in energy and precursor supply. Expression of aconitase, which isomerizes citrate into isocitrate, is controlled by several transcriptional regulators, including the dimeric aconitase repressor AcnR, assigned by sequence identity to the TetR family. We report the structures of AcnR in two crystal forms together with ligand binding experiments and in vivo studies.

View Article and Find Full Text PDF