Publications by authors named "Javier Francisco-Morcillo"

Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood.

View Article and Find Full Text PDF

Obesity has reached global epidemic proportions, and even though its effects are well-documented, studying the interactions among all influencing factors is crucial for a better understanding of its physiopathology. In a high-fat-diet-induced obesity animal model using C57BL/6J mice, behavioural responses were assessed through a battery of tests, while stress biomarkers and systemic inflammatory cytokines were measured using an Enzyme-Linked ImmunoSorbent Assay and a Bio-Plex Multiplex System. The peritoneal macrophage microbicide capacity was analysed via flow cytometry, and crown-like structures (CLSs) in white adipose tissue (WAT) were evaluated through staining techniques.

View Article and Find Full Text PDF

In this work we present a detailed study of the major events during retinal histogenesis of the cuttlefish Sepia officinalis from early embryos to newly hatched animals and juveniles. For this purpose, we carried out morphometric and histological analyses using light and scanning electron microscopy. From St19, the first embryonic stage analysed, to St23/24 the embryonic retina is composed of a pseudostratified epithelium showing abundant mitotic figures in the more internal surface.

View Article and Find Full Text PDF

Macrophage accumulation in the adipose tissue and changes in their inflammatory phenotype is a hallmark of obesity-induced inflammation, notably forming inflammatory structures known as "crown-like structures (CLS)". Exercise can be a key strategy to improve inflammation-related complications, but it is crucial to consider that, although exercise generally exerts systemic and local anti-inflammatory effects, this depends on the basal inflammatory status and exercise modality. In this context, the "bioregulatory effect of exercise" implies to achieve the reduction or prevention of an excessive inflammatory response and also the preservation or stimulation of the innate response.

View Article and Find Full Text PDF

The quail (, Linnaeus 1758), a notable model used in developmental biology, is a precocial bird species in which the processes of retinal cell differentiation and retinal histogenesis have been poorly studied. The purpose of the present research is to examine the retinogenesis in this bird species immunohistochemically and compare the results with those from previous studies in precocial and altricial birds. We found that the first PCNA-negative nuclei are detected at Stage (St) 21 in the vitreal region of the neuroblastic layer, coinciding topographically with the first αTubAc-/Tuj1-/Isl1-immunoreactive differentiating ganglion cells.

View Article and Find Full Text PDF

It has been shown that senescent cells accumulate in transient structures of the embryo that normally degenerate during tissue development. A collection of biomarkers is generally accepted to define senescence in embryonic tissues. The histochemical detection of β-galactosidase activity at pH 6.

View Article and Find Full Text PDF

During development of the vertebrate retina, mitotic activity is defined as apical when is located at the external surface of the neuroepithelium or as non-apical when is found in more internal regions. Apical mitoses give rise to all retinal cell types. Non-apical mitoses are linked to committed horizontal cell precursors that subsequently migrate vitreo-sclerally, reaching their final position in the outer surface of the inner nuclear layer, where they differentiate.

View Article and Find Full Text PDF

This study examines the anatomical development of the visual system of Atlantic bluefin tuna, Thunnus thynnus, during the first 15 days of life at histological level, with emphasis in the immunohistochemical characterization of different cell types. As an altricial fish species, the retina was not developed at hatching. The appearance of eye pigmentation and the transformation of the retina from an undifferentiated neuroblastic layer into a laminated structure occurred during the first two days of life.

View Article and Find Full Text PDF

The histochemical detection of β-galactosidase enzymatic activity at pH 6.0 (β-gal-pH6) is a widely used biomarker of cellular senescence in aging tissues. This histochemical assay also detects the presence of programmed cell senescence during specific time windows in degenerating structures of vertebrate embryos.

View Article and Find Full Text PDF

Tight-junction (TJ) proteins are essential for establishing the barrier function between neighbor epithelial cells, but also for recognition of pathogens or cell migration. Establishing the expression pattern and localization of different TJ proteins will help to understand the development and physiology of the airway. Here we identify that the junctional adhesion molecule 3 () expression is restricted to multiciliated cells (MCCs) in the airway epithelium.

View Article and Find Full Text PDF

Two production systems and several ages at slaughter were used: 12, 14 and 16 months for outdoor rearing (with the final finishing phase in the system, in which fed was based on natural resources, mainly acorns and grass) and 8, 10 and 12 months for animals reared indoors (intensive system: with feed based on commercial fodder) to evaluate their effect on the muscle fibre population and size of the , (LT) muscle, as well as fresh loin quality traits. Animals that were older at slaughter revealed increased fibre sizes of the LT muscles in the pigs reared in the system. The LT muscles of the animals reared in intensive systems had a lower percentage of type I fibres and higher size of type IIB than those reared in the system.

View Article and Find Full Text PDF

Planar cell polarity (PCP) is evolutionary conserved and play a critical role in proper tissue development and function. During central nervous system development, PCP proteins exhibit specific patterns of distribution and are indispensable for axonal growth, dendritogenesis, neuronal migration, and neuronal differentiation. The retina constitutes an excellent model in which to study molecular mechanisms involved in neural development.

View Article and Find Full Text PDF

This study shows the distribution patterns of apoptotic cells and biomarkers of cellular senescence during the ontogeny of the retina in the zebra finch (). Neurogenesis in this altricial bird species is intense in the retina at perinatal and post-hatching stages, as opposed to precocial bird species in which retinogenesis occurs entirely during the embryonic period. Various phases of programmed cell death (PCD) were distinguishable in the visual system.

View Article and Find Full Text PDF

During vertebrate embryonic development, cellular senescence occurs at multiple locations. To date, it has been accepted that when there has been induction of senescence in an embryonic tissue, β-galactosidase activity is detectable at a pH as high as 6.0, and this has been extensively used as a marker of cellular senescence in both whole-mount and cryosections.

View Article and Find Full Text PDF

The visual system is affected by neurodegenerative diseases caused by the degeneration of specific retinal neurons, the leading cause of irreversible blindness in humans. Throughout vertebrate phylogeny, the retina has two kinds of specialized niches of constitutive neurogenesis: the retinal progenitors located in the circumferential marginal zone and Müller glia. The proliferative activity in the retinal progenitors located in the circumferential marginal zone in precocial birds such as the chicken, the commonest bird model used in developmental and regenerative studies, is very low.

View Article and Find Full Text PDF

The bird retina offers an excellent model to investigate the mechanisms that coordinate the morphogenesis, histogenesis, and differentiation of neuron and glial cells. Although these developmental features have been intensively studied in the chicken (Gallus gallus, Linnaeus 1758), a precocial bird species, little is known about retinogenesis in altricial birds. The purpose of this study was to examine the differentiation of retinal cells in the altricial zebra finch (Taeniopygia guttata, Vieillot, 1817) and compare the results with those from previous studies in G.

View Article and Find Full Text PDF

Background: Senescence-associated β-galactosidase (SA-β-GAL) histochemistry is the most commonly used biomarker of cellular senescence. These SA-β-GAL-positive cells are senescent embryonic cells that are usually removed by apoptosis from the embryo, followed by macrophage-mediated clearance.

Results: Some authors have proposed that SA-β-GAL activity in differentiated neurons from young and adult mammals cannot be uniquely attributed to cell senescence, whether in vivo or in vitro.

View Article and Find Full Text PDF

Phenolics are involved in many of plants' biological functions. In particular, they play important roles in determining the quality of grape berries and the wine made from them, and can also act as antioxidants with beneficial effects for human health. Several enzymes are involved in the synthesis of phenolic compounds.

View Article and Find Full Text PDF

Comparative developmental studies have shown that the retina of altricial fish and mammals is incompletely developed at birth, and that, during the first days of life, maturation proceeds rapidly. In contrast, precocial fish and mammals are born with fully differentiated retinas. Concerning birds, knowledge about retinal development is generally restricted to a single order of precocial birds, Galliformes, due to the fact that both the chicken and the Japanese quail are considered model systems.

View Article and Find Full Text PDF

Müller cells are the predominant glial cell type in the retina of vertebrates. They play a wide variety of roles in both the developing and the mature retina that have been widely reported in the literature. However, less attention has been paid to their role in phagocytosis of cell debris under physiological, pathological or experimental conditions.

View Article and Find Full Text PDF

In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The number of digits varies between species or even between hindlimb and forelimb within the same species. These facts illustrate the plasticity of embryonic limb autopods.

View Article and Find Full Text PDF

The LIM-homeodomain transcription factor Islet-1 (Isl1) has been widely used as a marker of different subtypes of neurons in the developing and mature retina of vertebrates. During retinal neurogenesis, early Isl1 expression is detected in the nuclei of neuroblasts that give rise to ganglion, amacrine, bipolar, and horizontal cells. In the mature retina, Isl1 expression is restricted to the nuclei of ganglion cells, cholinergic amacrine cells, ON-bipolar cells, and subpopulations of horizontal cells.

View Article and Find Full Text PDF

Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny.

View Article and Find Full Text PDF

The LIM-homeodomain transcription factor Islet1 (Isl1) has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina.

View Article and Find Full Text PDF