In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics.
View Article and Find Full Text PDFMitochondrial DNA B Resour
October 2018
The strain sp. UdeA0106 is an antagonist of nematodes, fungi, and garden symphylans from crops with high economic importance in Colombia (Salazar 2013; Salazar et al. 2014; Cardona et al.
View Article and Find Full Text PDFBackground: The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C.
View Article and Find Full Text PDFThe complete mitogenome of the potato tuber moth Tecia solanivora (Lepidoptera: Gelechiidae) was sequenced, annotated, characterized and compared with 140 species of the order Lepidoptera. The circular genome is 15,251 bp, containing 37 genes (13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and an A+T-rich region). The gene arrangement was identical to other lepidopteran mitogenomes but different from the ancestral arrangement found in most insects for the tRNA-Met gene (A+T-region, tRNA-I, tRNA-Q, tRNA-M).
View Article and Find Full Text PDFCurrent knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs.
View Article and Find Full Text PDF