The electrocatalytic properties of Ru complexes are of great technological interest given their potential application in reactions such water splitting and CO reduction. In this work, a novel terpyridine-based Ru(II) complex, [RuCl(trpy)(acpy)], trpy = 2,2':6',2''-terpyridine, acpy = 2-pyridylacetate was synthesized and its spectroscopic, electrochemical and catalytic properties were explored in detail. In dry acetonitrile, the complex exhibits two reduction peaks at -1.
View Article and Find Full Text PDFEleven 2,2'-bipyridine (bpy) ligands functionalized with attachment groups for covalent immobilization on silicon surfaces were prepared. Five of the ligands feature silatrane functional groups for attachment to metal oxide coatings on the silicon surfaces, while six contain either alkene or alkyne functional groups for attachment to hydrogen-terminated silicon surfaces. The bpy ligands were coordinated to Re(CO)Cl to form complexes of the type Re(bpy)(CO)Cl, which are related to known catalysts for CO reduction.
View Article and Find Full Text PDFIn photosynthesis, solar energy is used to produce solar fuels in the form of new chemical bonds. A critical step to mimic photosystem II (PS II), a key protein in nature's photosynthesis, for artificial photosynthesis is designing devices for efficient light-driven water oxidation. Here, we describe a single molecular assembly electrode that duplicates the key components of PSII.
View Article and Find Full Text PDFA new ruthenium polypyridyl complex, [Ru(bpy)(acpy)] (acpy = 2-pyridylacetate, bpy = 2,2'-bipyridine), was synthesized and fully characterized. Distinct from the previously reported analog, [Ru(bpy)(pic)] (pic = 2-pyridylcarboxylate), the new complex is unstable under aerobic conditions and undergoes oxidation to yield the corresponding α-keto-2-pyridyl-acetate (acpyoxi) coordinated to the Ru center. The reaction is one of the few examples of C-H activation at mild conditions using O as the primary oxidant and can provide mechanistic insights with important implications for catalysis.
View Article and Find Full Text PDFDye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
View Article and Find Full Text PDFThe mechanistic identification of Nature's use of concerted reactions, in which all bond breaking and bond making occurs in a single step, has inspired rational designs for artificial synthetic transformations via pathways that bypass high-energy intermediates that would otherwise be thermodynamically and kinetically inaccessible. In this contribution we electrochemically activate an organometallic Ruthenium(II) complex to show that, in acetonitrile solutions, the movement of protons from weak Brønsted acids, such as water and methanol, is coupled with the transfer of its negatively charged counterpart to carbon dioxide (CO)─a process termed ─to stoichiometrically produce a metal-hydride complex and a carbonate species. These previously unidentified pathways have played key roles in CO and proton reduction catalysis by enabling the generation of key intermediates such as hydrides and metallocarboxylic acids, while their applicability to carbon acids may provide alternative approaches in the electrosynthesis of chemical commodities via alkylation and carboxylation reactions.
View Article and Find Full Text PDFThe discovery of new and versatile strategies for the immobilization of molecular water-oxidation catalysts (WOCs) is crucial for developing clean energy conversion devices [e.g., (photo)electrocatalytic cells for water splitting].
View Article and Find Full Text PDFFundamental understanding of catalytic mechanisms of water oxidation is a prerequisite for the design and development of efficient and rugged water oxidation catalysts. In this work, a detailed mechanistic study of the water oxidation mechanism of the [Ru(npm)(4-pic)(HO)] (npm = 4--butyl-2,6-di(1',8'-naphthyrid-2'-yl)-pyridine, pic = 4-picoline) complex, , reveals oxygen atom transfer from highly reactive ruthenium oxo intermediates to noncoordinating nitrogen atoms of the ligand as a novel route for oxygen evolution via storage of oxidizing equivalents as N-oxide groups on the ligand framework. Theoretical calculations show that the initial complex, , is transformed to a di-N-oxide complex upon oxidation via facile OAT steps from species and that represents the most likely reactive species for the critical O-O bond formation.
View Article and Find Full Text PDFAnchoring strategies for immobilization of molecular catalysts, chromophores, and chromophore-catalyst assemblies on electrode surfaces play an important role in solar energy conversion devices such as dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells. They are also important in interfacial studies with surface-bound molecules including electron-transfer dynamics and mechanistic studies related to small molecule activation catalysis. Significant progress has been made in this area, but many challenges remain in terms of stability, synthetic complexity, and versatility.
View Article and Find Full Text PDFA deeper mechanistic understanding of the key O-O bond formation step of water oxidation by the [Ru(bda)(L)] (bdaH = 2,2'-bipyridine-6,6'-dicarboxylic acid; L is a pyridine or isoquinoline derivative) family of catalysts is reached through harmonious experimental and computational studies of two series of modified catalysts with systematic variations in the axial ligands. The introduction of halogen and electron-donating substituents in [Ru(bda)(4-X-py)] and [Ru(bda)(6-X-isq)] (X is H, Cl, Br, and I for the pyridine series and H, F, Cl, Br, and OMe for the isoquinoline series) enhances the noncovalent interactions between the axial ligands in the transition state for the bimolecular O-O coupling, resulting in a lower activation barrier and faster catalysis. From detailed transition state calculations in combination with experimental kinetic studies, we find that the main contributor to the free energy of activation is entropy due to the highly organized transition states, which is contrary to other reports.
View Article and Find Full Text PDFA critical step in creating an artificial photosynthesis system for energy storage is designing catalysts that can thrive in an assembled device. Single-site catalysts have an advantage over bimolecular catalysts because they remain effective when immobilized. Hybrid water oxidation catalysts described here, combining the features of single-site bis-phosphonate catalysts and fast bimolecular bis-carboxylate catalysts, have reached turnover frequencies over 100 s, faster than both related catalysts under identical conditions.
View Article and Find Full Text PDFIn this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O-O bond formation, oxidative activation of peroxide intermediates, and O evolution.
View Article and Find Full Text PDFIn order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L)] catalysts (bdaH = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda ligand was synthesized and studied using stopped-flow kinetics. The additional -CF groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration.
View Article and Find Full Text PDFProton-coupled electron transfer (PCET) reactions were studied in acetonitrile for a Photosystem II (PSII)-inspired [Ru(bpy)2(phen-imidazole-Ph(OH)((t)Bu)2)](2+), in which Ru(III) generated by a flash-quench sequence oxidizes the appended phenol and the proton is transferred to the hydrogen-bonded imidazole base. In contrast to related systems, the donor and acceptor are strongly coupled, as indicated by the shift in the Ru(III/II) couple upon phenol oxidation, and intramolecular oxidation of the phenol by Ru(III) is energetically favorable by both stepwise and concerted pathways. The phenol oxidation occurs via a stepwise ET-PT mechanism with kET = 2.
View Article and Find Full Text PDFWe describe herein the synthesis and characterization of ruthenium complexes with multifunctional bipyridyl diphosphonate ligands as well as initial water oxidation studies. In these complexes, the phosphonate groups provide redox-potential leveling through charge compensation and σ donation to allow facile access to high oxidation states. These complexes display unique pH-dependent electrochemistry associated with deprotonation of the phosphonic acid groups.
View Article and Find Full Text PDFA Ru(II) polypyridyl-derivatized polypropylacrylate end-capped with a water-oxidation-catalyst (WOC) has been synthesized by using reversible addition-fragmentation chain transfer polymerization (RAFT) followed by click reaction and end-group functionalization. In cyclic voltammograms in propylene carbonate, chromophore oxidation occurs at 1.27 V vs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2015
In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [Ru(II)(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [Ru(II)(CO2-bpy-CO2(-))(isoq)2(NCCH3)], as shown by (1)H and (13)C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV).
View Article and Find Full Text PDFWe describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)2] including X-ray structure of intermediates and their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)2], revealing key features unavailable from solution studies with sacrificial oxidants.
View Article and Find Full Text PDFIn the design of light-harvesting chromophores for use in dye-sensitized photoelectrosynthesis cells (DSPECs), surface binding to metal oxides in aqueous solutions is often inhibited by synthetic difficulties. We report here a systematic synthesis approach for preparing a family of Ru(II) polypyridyl complexes of the type [Ru(4,4'-R2-bpy)2(4,4'-(PO3H2)2-bpy)](2+) (4,4'(PO3H2)2-bpy = [2,2'-bipyridine]-4,4'-diylbis(phosphonic acid); 4,4'-R2-bpy = 4,4'-R2-2,2'-bipyridine; and R = OCH3, CH3, H, or Br). In this series, the nature of the 4,4'-R2-bpy ligand is modified through the incorporation of electron-donating (R = OCH3 or CH3) or electron-withdrawing (R = Br) functionalities to tune redox potentials and excited-state energies.
View Article and Find Full Text PDFThe complex [Ru(Mebimpy)(4,4'-((HO)2OPCH2)2bpy)(OH2)](2+) surface bound to tin-doped indium oxide mesoporous nanoparticle film electrodes (nanoITO-Ru(II)(OH2)(2+)) is an electrocatalyst for the selective oxidation of methylrhenium trioxide (MTO) to methanol in acidic aqueous solution. Oxidative activation of the catalyst to nanoITO-Ru(IV)(OH)(3+) induces oxidation of MTO. The reaction is first order in MTO with rate saturation observed at [MTO] > 12 mM with a limiting rate constant of k = 25 s(-1).
View Article and Find Full Text PDFSolvent and temperature dependent paramagnetism is reported for the complex [Ru(II)(bpy)2(phendione)](PF6)2 (bpy = 2,2'-bipyridine, phendione = 1,10-phenanthroline-5,6-dione), . Magnetometry, (1)H-NMR, EPR and substituent effects confirm that the paramagnetic character is localized on the phendione ligand, and arises due to mixing of the MLCT excited state with an open shell triplet state on the phendione moiety, a process that is most likely driven by aromatization. The stabilized open shell phendione structure, in which the triplet lies lower in energy than the singlet, can then be thermally populated from the ground state of the complex.
View Article and Find Full Text PDFArtificial photosynthesis based on dye-sensitized photoelectrosynthesis cells requires the assembly of a chromophore and catalyst in close proximity on the surface of a transparent, high band gap oxide semiconductor for integrated light absorption and catalysis. While there are a number of approaches to assemble mixtures of chromophores and catalysts on a surface for use in artificial photosynthesis based on dye-sensitized photoelectrosynthesis cells, the synthesis of discrete surface-bound chromophore-catalyst conjugates is a challenging task with few examples to date. Herein, a versatile synthetic approach and electrochemical characterization of a series of oligoproline-based light-harvesting chromophore-water-oxidation catalyst assemblies is described.
View Article and Find Full Text PDFLight-driven dehydrogenation of benzyl alcohol (BnOH) to benzaldehyde and hydrogen has been shown to occur in a dye-sensitized photoelectrosynthesis cell (DSPEC). In the DSPEC, the photoanode consists of mesoporous films of TiO2 nanoparticles or of core/shell nanoparticles with tin-doped In2O3 nanoparticle (nanoITO) cores and thin layers of TiO2 deposited by atomic layer deposition (nanoITO/TiO2). Metal oxide surfaces were coderivatized with both a ruthenium polypyridyl chromophore in excess and an oxidation catalyst.
View Article and Find Full Text PDF