Publications by authors named "Javier Castresana"

Adenylate kinases (AKs) are important enzymes involved in cellular energy metabolism. Among AKs, AK5 (adenylate kinase 5), a cytosolic protein, is emerging as a significant contributor to various diseases and cellular processes. This comprehensive review integrates findings from various research groups on AK5 since its discovery, shedding light on its multifaceted roles in nucleotide metabolism, energy regulation, and cellular differentiation.

View Article and Find Full Text PDF

Glioblastoma is the most aggressive, malignant, and lethal brain tumor of the central nervous system. Its poor prognosis lies in its inefficient response to currently available treatments that consist of surgical resection, radiotherapy, and chemotherapy. Recently, the use of mesenchymal stem cells (MSCs) as a possible kind of cell therapy against glioblastoma is gaining great interest due to their immunomodulatory properties, tumor tropism, and differentiation into other cell types.

View Article and Find Full Text PDF

Glioblastoma, a highly aggressive and lethal brain cancer, lacks effective treatment options and has a poor prognosis. In our study, we explored the potential anti-cancer effects of sodium butyrate (SB) and celastrol (CEL) in two glioblastoma cell lines. SB, a histone deacetylase inhibitor, and CEL, derived from the tripterygium wilfordii plant, act as mTOR and proteasome inhibitors.

View Article and Find Full Text PDF

Glioblastoma is the most aggressive and fatal form of brain cancer. Despite new advancements in treatment, the desired outcomes have not been achieved. Temozolomide (TMZ) is the first-choice treatment for the last two decades and has improved survival rates.

View Article and Find Full Text PDF

Glioblastoma is the most aggressive form of brain tumor originating from glial cells with a maximum life expectancy of 14.6 months. Despite the establishment of multiple promising therapies, the clinical outcome of glioblastoma patients is abysmal.

View Article and Find Full Text PDF

Central nervous system tumors are a leading cause of cancer-related death in children and adults, with medulloblastoma (MB) and glioblastoma (GBM) being the most prevalent malignant brain tumors, respectively. Despite tremendous breakthroughs in neurosurgery, radiation, and chemotherapeutic techniques, cell heterogeneity and various genetic mutations impacting cell cycle control, cell proliferation, apoptosis, and cell invasion result in unwanted resistance to treatment approaches, with a 5-year survival rate of 70-80% for medulloblastoma, and the median survival time for patients with glioblastoma is only 15 months. Developing new medicines and utilizing combination medications may be viewed as excellent techniques for battling MB and GBM.

View Article and Find Full Text PDF

Neuroblastoma is the most frequent malignant extracranial solid tumor of infancy. The overall objective of this work consists of determining the presence of alterations in the p53/MDM2/p14ARF signaling pathway in neuroblastoma cell lines and deciphering their possible relationship with resistance to known antineoplastic drugs and to differentiation agents. Firstly, we characterized 10 neuroblastoma cell lines for alterations at the p53/MDM2/p14ARF signaling pathway by analysis of TP53 point mutations, MYCN and MDM2 amplification, and p14ARF methylation, homozygous deletions, and expression.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma multiforme is the most common and aggressive brain tumor, currently lacking effective therapies.
  • High levels of mesenchymal markers and increased autophagy are observed in glioblastoma cells, indicating a complex disease pathogenesis.
  • Silencing HDAC6 in glioblastoma cell lines showed reduced tumor cell growth and migration, reversed aggressive traits, and suggests HDAC6 as a potential therapeutic target.
View Article and Find Full Text PDF

Glioblastoma (GB) is one of the most common types of lethal brain tumors. Although several treatment options are available including surgery, along with adjuvant chemo and radiotherapy, the disease has a poor prognosis and patients generally die within 14 months of diagnosis. GB is chemo and radio resistant.

View Article and Find Full Text PDF

Glioblastoma is the most malignant brain tumor and presents high resistance to chemotherapy and radiotherapy. Surgery, radiotherapy and chemotherapy with temozolomide are the only treatments against this tumor. New targeted therapies, including epigenetic modulators such as 3‑deazaneplanocin A (DZ‑Nep; an EZH2 inhibitor) and panobinostat (a histone deacetylase inhibitor) are being tested in vitro, together with temozolomide.

View Article and Find Full Text PDF

Background: Giant cell glioblastoma (gcGBM) is a rare morphological variant of IDH-wildtype (IDHwt) GBM that occurs in young adults and have a slightly better prognosis than "classic" IDHwt GBM.

Methods: We studied 36 GBMs, 14 with a histopathological diagnosis of gcGBM and 22 with a giant cell component. We analyzed the genetic profile of the most frequently mutated genes in gliomas and assessed the tumor mutation load (TML) by gene-targeted next-generation sequencing.

View Article and Find Full Text PDF

Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson's disease. Whether aSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved.

View Article and Find Full Text PDF

Current treatment against glioblastoma consists of surgical resection followed by temozolomide, with or without combined radiotherapy. Glioblastoma frequently acquires resistance to chemotherapy and/or radiotherapy. Novel therapeutic approaches are thus required.

View Article and Find Full Text PDF

Glioblastoma or grade IV astrocytoma is the most common and lethal form of glioma. Current glioblastoma treatment strategies use surgery followed by chemotherapy with temozolomide. Despite this, numerous glioblastoma cases develop resistance to temozolomide treatments, resulting in a poor prognosis for the patients.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant adult primary brain tumor. Despite its high lethality, a small proportion of patients have a relatively long overall survival (OS). Here we report a study of a series of 74 GBM samples from 29 long-term survivors ([LTS] OS ≥36 months) and 45 non-LTS.

View Article and Find Full Text PDF

There are various theories to explain the pathophysiology of depression and support its diagnosis and treatment. The roles of monoamines, brain-derived neurotrophic factor (BDNF), and Wnt signaling are well researched, but sonic hedgehog (Shh) signaling and its downstream transcription factor Gli1 are not well studied in depression. Shh signaling plays a fundamental role in embryonic development and adult hippocampal neurogenesis and also involved in the growth of cancer.

View Article and Find Full Text PDF

Medulloblastoma (MB) is a highly malignant tumor of childhood. MB seems to be initiated and maintained by a small group of cells, known as cancer stem cells (CSCs). The CSC hypothesis suggests that a subset of tumor cells is able to proliferate, sustain the tumor, and develop chemoresistance, all of which make of CSC an interesting target for new anticancer therapies.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 60-70% of all gliomas. Current median patient survival time is 14-16 months after diagnosis. Numerous efforts in therapy have not significantly altered the nearly uniform lethality of this malignancy.

View Article and Find Full Text PDF

Meningiomas are common intracranial tumors derived from arachnoid cells. Multiple meningiomas are occasionally present even in patients with no history of neurofibromatosis type 2, a condition that can cause the formation of this neoplasm. Previous studies have shown that most multiple meningiomas are monoclonal in origin.

View Article and Find Full Text PDF

According to World Health Organization criteria, diffuse gliomas are divided into several histological subtypes, including astrocytomas, oligodendrogliomas, and oligoastrocytomas, and 4 malignancy grades (I-IV). Molecular alterations, such as the isocitrate dehydrogenase gene (IDH) mutation or 1p/19q loss, are found in these tumors but are not included in the current classification system. Recently, mutation of α thalassemia/mental retardation syndrome X-linked (ATRX) gene and its loss of expression have been reported in infiltrating gliomas.

View Article and Find Full Text PDF