Publications by authors named "Javier Carmona-Espindola"

The charge-transfer energy contribution is one of the most controversial components of the total interaction energy. Commonly, the energy associate to a charge-transfer process depends on population analysis. Therefore, the results further depend on how the population analysis is defined, and certainly, the results may be arbitrary.

View Article and Find Full Text PDF

A new population analysis, ADCHα-I, based on the interpolation between the Hirshfeld (H) and the iterative Hirshfeld (H-I) methods through a parameter α and on the atomic dipole moment corrected Hirshfeld (ADCH) methodology is proposed, in combination with the constrained dipole moment density functional theory (CD-DFT) previously developed, to determine the charge distributions of force fields. Following this approach, the electronic density of the isolated molecule is determined for the value of the dipole moment that reproduces the experimental dielectric constant, in order to incorporate through this property the effects of the surrounding molecules in the liquid, and to carry on this information to the molecular simulation, the new population analysis is built to obtain the set of charges that reproduces this dipole moment. By selecting α = 1/2, one is led to charges that are larger than the ones obtained through H and ADCH and smaller than those of H-I and that incorporate, at the local level, information about the response of isolated atoms to donate or to accept charge, which is not considered in ADCH.

View Article and Find Full Text PDF

The deviations from linearity of the energy as a function of the number of electrons that arise with current approximations to the exchange-correlation (XC) energy functional have important consequences for the frontier eigenvalues of molecules and the corresponding valence-band maxima for solids. In this work, we present an analysis of the exact theory that allows one to infer the effects of such approximations on the highest occupied and lowest unoccupied molecular orbital eigenvalues. Then, we show the importance of the asymptotic behavior of the XC potential in the generalized gradient approximation (GGA) in the case of the NCAPR functional (nearly correct asymptotic potential revised) for determining the shift of the frontier orbital eigenvalues toward the exact values.

View Article and Find Full Text PDF

A new density functional for the total kinetic energy in the generalized gradient approximation is developed through an enhancement factor that leads to the correct behavior in the limits when the reduced density gradient tends to 0 and to infinity and by making use of the conjoint conjecture for the interpolation between these two limits, through the incorporation, in the intermediate region of constraints that are associated with the exchange energy functional. The resulting functional leads to a reasonable description of the kinetic energies of atoms and molecules when it is used in combination with Hartree-Fock densities. Additionally, in order to improve the behavior of the kinetic energy density, a new enhancement factor for the Pauli kinetic energy is proposed by incorporating the correct behavior into the limits when the reduced density gradient tends to 0 and to infinity, together with the positivity condition, and imposing through the interpolation function that the sum of its integral over the whole space and the Weiszacker energy must be equal to the value obtained with the enhancement factor developed for the total kinetic energy.

View Article and Find Full Text PDF

A new procedure, based on electronic structure calculations that only requires a dipole moment value for a given molecule as input and, from which the charges for all the atoms in it are uniquely determined, is developed and applied to the study of molecular fluids with classical dynamics. The dipole moment value considered for the isolated molecule is the one that reproduces the dielectric constant of its corresponding fluid. Following previous work, the Lennard-Jones parameters are determined to reproduce the liquid density and the surface tension at the liquid-vapor interface.

View Article and Find Full Text PDF

Two methods to calculate negative electron affinities systematically from ground-state density functional methods are presented. One makes use of the lowest unoccupied molecular orbital energy shift provided by approximate inclusion of derivative discontinuity in the nearly correct asymptotic potential (NCAP) nonempirical, constraint-based generalized gradient approximation exchange functional. The other uses a second-order perturbation calculation of the derivative discontinuity based on the NCAP exchange-correlation potential.

View Article and Find Full Text PDF

We develop and validate a nonempirical generalized gradient approximation (GGA) exchange (X) density functional that performs as well as the SCAN (strongly constrained and appropriately normed) meta-GGA on standard thermochemistry tests. Additionally, the new functional (NCAP, nearly correct asymptotic potential) yields Kohn-Sham eigenvalues that are useful approximations of the density functional theory (DFT) ionization potential theorem values by inclusion of a systematic derivative discontinuity shift of the X potential. NCAP also enables time-dependent DFT (TD-DFT) calculations of good-quality polarizabilities, hyper-polarizabilities, and one-Fermion excited states without modification (calculated or ad hoc) of the long-range behavior of the exchange potential or other patches.

View Article and Find Full Text PDF

An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons.

View Article and Find Full Text PDF

A new non-empirical exchange energy functional of the generalized gradient approximation (GGA) type, which gives an exchange potential with the correct asymptotic behavior, is developed and explored. In combination with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional, the new CAP-PBE (CAP stands for correct asymptotic potential) exchange-correlation functional gives heats of formation, ionization potentials, electron affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for hydrogen and non-hydrogen transfer reactions, bond distances, and harmonic frequencies on standard test sets that are fully competitive with those obtained from other GGA-type functionals that do not have the correct asymptotic exchange potential behavior. Distinct from them, the new functional provides important improvements in quantities dependent upon response functions, e.

View Article and Find Full Text PDF

The recently developed auxiliary density perturbation theory is extended to time-dependent perturbations. As its static counterpart, it is based on auxiliary density functional theory in which the Coulomb and exchange-correlation potentials are expressed through one auxiliary function density. As in the case of static perturbations a noniterative alternative to the corresponding coupled perturbed Kohn-Sham method is formulated.

View Article and Find Full Text PDF

We present a theoretical study of the polarizabilities of free and disubstituted azoarenes employing auxiliary density perturbation theory (ADPT) and the noniterative approximation to the coupled perturbed Kohn-Sham (NIA-CPKS) method. Both methods are noniterative but use different approaches to obtain the perturbed density matrix. NIA-CPKS is different from the conventional CPKS approach in that the perturbed Kohn-Sham matrix is obtained numerically, thereby yielding a single-step solution to CPKS.

View Article and Find Full Text PDF