Publications by authors named "Javier Buezo"

Nitric oxide (NO) is an essential reactive oxygen species and a signal molecule in plants. Although several studies have proposed the occurrence of oxidative NO production, only reductive routes for NO production, such as the nitrate (NO-3) -upper-reductase pathway, have been evidenced to date in land plants. However, plants grown axenically with ammonium as the sole source of nitrogen exhibit contents of nitrite and NO, evidencing the existence of a metabolic pathway for oxidative production of NO.

View Article and Find Full Text PDF

Iron (Fe) is an essential plant micronutrient, being a major limiting growth factor in calcareous soils. To increase Fe uptake, plants induce lateral roots growth, the expression of a Fe(III)-chelate reductase (FCR), a Fe(II)-transporter and a H-ATPase and the secretion of flavins. Furthermore, auxin hormone family is involved in the Fe-deficiency responses but the action mechanism remains elusive.

View Article and Find Full Text PDF

The iron superoxide dismutase (FeSOD) is a first barrier to defend photosynthetic organisms from superoxide radicals. Although it is broadly present in plants and bacteria, FeSODs are absent in animals. They belong to the same phylogenic family as Mn-containing SODs, which are also highly efficient at detoxifying superoxide radicals.

View Article and Find Full Text PDF

The aromatic amino acid tryptophan is the main precursor for indole-3-acetic acid (IAA), which involves various parallel routes in plants, with indole-3-acetaldoxime (IAOx) being one of the most common intermediates. Auxin signaling is well known to interact with free radical nitric oxide (NO) to perform a more complex effect, including the regulation of root organogenesis and nitrogen nutrition. To fathom the link between IAA and NO, we use a metabolomic approach to analyze the contents of low-molecular-mass molecules in cultured cells of after the application of S-nitrosoglutathione (GSNO), an NO donor or IAOx.

View Article and Find Full Text PDF

The ornithine-urea cycle (urea cycle) makes a significant contribution to the metabolic responses of lower photosynthetic eukaryotes to episodes of high nitrogen availability. In this study, we compared the role of the plant urea cycle and its relationships to polyamine metabolism in ammonium-fed and nitrate-fed Medicago truncatula plants. High ammonium resulted in the accumulation of ammonium and pathway intermediates, particularly glutamine, arginine, ornithine, and putrescine.

View Article and Find Full Text PDF

Indole-3-acetaldoxime (IAOx) is a particularly relevant molecule as an intermediate in the pathway for tryptophan-dependent auxin biosynthesis. The role of IAOx in growth-signalling and root phenotype is poorly studied in cruciferous plants and mostly unknown in non-cruciferous plants. We synthesized IAOx and applied it to M.

View Article and Find Full Text PDF

The consumption of zeaxanthin (Z) through a vegetable-rich diet is recommended to reduce the progression of age-related macular degeneration. Due to Z's intrinsic dynamic character that results from its participation in the photoprotective xanthophyll cycle involving the carotenoids violaxanthin, antheraxanthin and zeaxanthin (VAZ), post-harvest handling practices and storage usually retain low amounts of this bioactive compound (compared to the rest of phytochemicals that are, in general, more stable). Thus, the aim of this work was to investigate in important consumed leafy vegetables the effects of different storage conditions on carotenoids (mainly Z) including i) packaging under three modified atmospheres (MAs), ii) light refrigerated supermarket storage and iii) dark refrigerated domestic storage.

View Article and Find Full Text PDF

Soybean is a crop of agronomic importance that requires adequate watering during its growth to achieve high production. In this study, we determined physiological, photochemical and metabolic differences in five soybean varieties selected from the parental lines of a nested association mapping population during mild drought. These varieties have been described as high yielding (NE3001, HY1; LD01-5907, HY2) or drought tolerant (PI518751; HYD1; PI398881, HYD2).

View Article and Find Full Text PDF