The ability to confine THz photons inside deep-subwavelength cavities promises a transformative impact for THz light engineering with metamaterials and for realizing ultrastrong light-matter coupling at the single emitter level. To that end, the most successful approach taken so far has relied on cavity architectures based on metals, for their ability to constrain the spread of electromagnetic fields and tailor geometrically their resonant behavior. Here, we experimentally demonstrate a comparatively high level of confinement by exploiting a plasmonic mechanism based on localized THz surface plasmon modes in bulk semiconductors.
View Article and Find Full Text PDFMemristors, a cornerstone for neuromorphic electronics, respond to the history of electrical stimuli by varying their electrical resistance across a continuum of states. Much effort has been recently devoted to developing an analogous response to optical excitation. Here we realize a novel tunnelling photo-memristor whose behaviour is bimodal: its resistance is determined by the dual electrical-optical history.
View Article and Find Full Text PDFResistive switching effects offer new opportunities in the field of conventional memories as well as in the booming area of neuromorphic computing. Here the authors demonstrate memristive switching effects produced by a redox-driven oxygen exchange in tunnel junctions based on NdNiO , a strongly correlated electron system characterized by the presence of a metal-to-insulator transition (MIT). Strikingly, a strong interplay exists between the MIT and the redox mechanism, which on the one hand modifies the MIT itself, and on the other hand radically affects the tunnel resistance switching and the resistance states' lifetime.
View Article and Find Full Text PDFStrong correlated manganites are still under intense research owing to their complex phase diagrams in terms of Sr-doping and their sensitivity to intrinsic and extrinsic structural deformations. Here, we performed X-ray absorption spectroscopy measurements of manganite bilayers to explore the effects that a local Sr-doping gradient produce on the charge and antiferromagnetic anisotropies. In order to gradually tune the Sr-doping level along the axis perpendicular to the samples we have grown a series of bilayers with different thicknesses of low-doped manganites (from 0 nm to 6 nm) deposited over a LaSrMnO metallic layer.
View Article and Find Full Text PDFUsing heterostructures that combine a large-polarization ferroelectric (BiFeO3) and a high-temperature superconductor (YBa2Cu3O(7-δ)), we demonstrate the modulation of the superconducting condensate at the nanoscale via ferroelectric field effects. Through this mechanism, a nanoscale pattern of normal regions that mimics the ferroelectric domain structure can be created in the superconductor. This yields an energy landscape for magnetic flux quanta and, in turn, couples the local ferroelectric polarization to the local magnetic induction.
View Article and Find Full Text PDF