Optical fiber-based Localized Surface Plasmon Resonance (OF-LSPR) biosensors have emerged as an ultra-sensitive miniaturized tool for a great variety of applications. Their fabrication by the chemical immobilization of gold nanoparticles (AuNPs) on the optic fiber end face is a simple and versatile method. However, it can render poor reproducibility given the number of parameters that influence the binding of the AuNPs.
View Article and Find Full Text PDFThe facet of optical fibers coated with nanostructures enables the development of ultraminiature and sensitive (bio)chemical sensors. The sensors reported until now lack specificity, and the fabrication methods offer poor reproducibility. Here, we demonstrate that by transforming the facet of conventional multimode optical fibers onto plasmon resonance energy transfer antenna surfaces, the specificity issues may be overcome.
View Article and Find Full Text PDFMethanol is a poison which is frequently discovered in alcoholic beverages. Innovative methods to detect methanol in alcoholic beverages are being constantly developed. We report for the first time a new strategy for the detection of methanol using fluorescence spectroscopy and photoelectrochemical (PEC) analysis.
View Article and Find Full Text PDFWe discovered that copper ions (Cu) catalyze the oxidation of cysteine (CSH) by oxygen (O) to modulate the growth of CSH-capped cadmium sulfide (CdS) nanoparticles (NPs). This new chemical process was applied to sensitive fluorogenic and photoelectrochemical (PEC) detection of Cu ions in real samples of mineral and tap water using the photocatalytic activity of the resulting NPs. Disposable screen-printed electrodes (SPCEs) modified with electroactive polyvinylpyridine bearing osmium complex (Os-PVP) by cyclic voltammetry (CV) were employed for PEC analytical system.
View Article and Find Full Text PDFElectrochemical detection strategies employing semiconductor quantum dots (QDs) open up new opportunities for highly sensitive detection of biological targets. We designed a new assay based on microbead linked enzymatic generation of CdS QDs (Microbead QD-ELISA) and employed it in optical and electrochemical affinity assays for the cancer biomarker superoxide dismutase 2 (SOD2). Biotinylated antibodies against SOD2 were immobilized on the surface of polyvinyl chloride microbeads bearing streptavidin.
View Article and Find Full Text PDFWe report an innovative photoelectrochemical process (PEC) based on graphite electrode modified with electroactive polyvinylpyridine bearing osmium complex (Os-PVP). The system relies on the in situ enzymatic generation of CdS quantum dots (QDs). Alkaline phosphatase (ALP) catalyzes the hydrolisis of sodium thiophosphate (TP) to hydrogen sulfide (H2S) which in the presence Cd(2+) ions yields CdS semiconductor nanoparticles (SNPs).
View Article and Find Full Text PDF