Transcriptomic studies have become an essential tool to understand the response of yeast to stimuli. The present work analyses the reaction of eight Saccharomyces cerevisiae strains with varying competitive abilities against a competitor (CR85, Saccharomyces kudriavzevii) in co-cultured fermentations. RNA sequencing (RNAseq) was performed at three very early time points after strains coinoculation in fermentation to delimit exactly when S.
View Article and Find Full Text PDFClassifying a yeast strain into a recognized species is not always straightforward. Currently, the taxonomic delineation of yeast strains involves multiple approaches covering phenotypic characteristics and molecular methodologies, including genome-based analysis. The aim of this study was to evaluate the suitability of the Average Nucleotide Identity (ANI) calculation through FastANI, a tool created for bacterial species identification, for the assignment of strains to some yeast species.
View Article and Find Full Text PDFThis study aimed to investigate how parental genomes contribute to yeast hybrid metabolism using a metabolomic approach. Previous studies have explored central carbon and nitrogen metabolism in Saccharomyces species during wine fermentation, but this study analyses the metabolomes of Saccharomyces hybrids for the first time. We evaluated the oenological performance and intra- and extracellular metabolomes, and we compared the strains according to nutrient consumption and production of the main fermentative by-products.
View Article and Find Full Text PDFThe Saccharomyces species have diverged in their thermal growth profile. Both Saccharomyces cerevisiae and Saccharomyces paradoxus grow at temperatures well above the maximum growth temperature of Saccharomyces kudriavzevii and Saccharomyces uvarum but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance.
View Article and Find Full Text PDFAntifungal proteins (AFPs) from filamentous fungi offer the potential to control fungal infections that threaten human health and food safety. AFPs exhibit broad antifungal spectra against harmful fungi, but limited knowledge of their killing mechanism hinders their potential applicability. PeAfpA from Penicillium expansum shows strong antifungal potency against plant and human fungal pathogens and stands above other AFPs for being active against the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe species have diverged in their thermal growth profile. Both and grow at temperatures well above the maximum growth temperature of and , but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance.
View Article and Find Full Text PDFRecently, the presence of melatonin in fermented beverages has been correlated with yeast metabolism during alcoholic fermentation. Melatonin, originally considered a unique product of the pineal gland of vertebrates, has been also identified in a wide range of invertebrates, plants, bacteria, and fungi in the last two decades. These findings bring the challenge of studying the function of melatonin in yeasts and the mechanisms underlying its synthesis.
View Article and Find Full Text PDFThe wine industry has implemented complex starters with multiple yeast species as an efficient method to improve certain wine properties. Strains' competitive fitness becomes essential for its use in such cases. In the present work, we studied this trait in 60 S.
View Article and Find Full Text PDFUnderstanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions.
View Article and Find Full Text PDFMixed culture wine fermentations combining species within the genus have the potential to produce new market tailored wines. They may also contribute to alleviating the effects of climate change in winemaking. Species, such as , show good fermentative properties at low temperatures and produce wines with lower alcohol content, higher glycerol amounts and good aroma.
View Article and Find Full Text PDFThe effect of two commercial formulations (incorporating mepanipyrim and tetraconazole as active substances) on the metabolism of Saccharomyces cerevisiae Lalvin T73™, growing on a synthetic grape must, and their influence on the alcoholic fermentation course and the biosynthesis of volatiles derived from phenylalanine catabolism was studied. No relevant effects were observed for mepanipyrim except for glycerol production. On the contrary, in the presence of tetraconazole many genes and some proteins related to cell cycle progression and mitosis were repressed.
View Article and Find Full Text PDFGrape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S.
View Article and Find Full Text PDFThe most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content.
View Article and Find Full Text PDFWineries face unprecedented challenges due to new market demands and climate change effects on wine quality. New yeast starters including non-conventional species, such as , may contribute to deal with some of these challenges. The design of new fermentations using non-conventional yeasts requires an improved understanding of the physiology and metabolism of these cells.
View Article and Find Full Text PDFS. kudriavzevii has potential for fermentations and other biotechnological applications, but is sensitive to many types of stress. We tried to increase its tolerance and performance via the expression of various transporters from different yeast species.
View Article and Find Full Text PDFis the most widespread microorganism responsible for wine alcoholic fermentation. Nevertheless, the wine industry is currently facing new challenges, some of them associate with climate change, which have a negative effect on ethanol content and wine quality. Numerous and varied strategies have been carried out to overcome these concerns.
View Article and Find Full Text PDFis the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional species (such as or ) or their hybrids ( x and x ) can contribute to solve some of these challenges.
View Article and Find Full Text PDF