With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including , and (ESKAPE).
View Article and Find Full Text PDFDue to the recent emergence of multi-drug resistant strains, the development of novel antimicrobial agents has become a critical issue. The use of micronutrient transition metals is a promising approach to overcome this problem since these compounds exhibit significant toxicity at low concentrations in prokaryotic cells. In this work, we demonstrate that at concentrations lower than their minimal inhibitory concentrations and in combination with different antibiotics, it is possible to mitigate the barriers to employ metallic micronutrients as therapeutic agents.
View Article and Find Full Text PDFAntibiotic Microbial Resistance (AMR) is a major global challenge as it constitutes a severe threat to global public health if not addressed. To fight against AMR bacteria, new antimicrobial agents are continually needed, and their efficacy must be tested. Historically, many transition metals have been employed, but their cytotoxicity is an issue and hence must be reduced, typically by combination with organic polymers.
View Article and Find Full Text PDFInt J Nanomedicine
July 2019
Global increase in the consumption of antibiotics has induced selective stress on wild-type microorganisms, pushing them to adapt to conditions of higher antibiotic concentrations, and thus an increased variety of resistant bacterial strains have emerged. Metal nanoparticles synthesized by green methods have been studied and proposed as potential antimicrobial agents against both wild-type and antibiotic-resistant strains; in addition, exopolysaccharides have been used as capping agent of metal nanoparticles due to their biocompatibility, reducing biological risks in a wide variety of applications. In this work, we use an exopolysaccharide, from UANL-001L, an autochthonous strain from the Mexican northeast, as a capping agent in the synthesis of Zn, and Ni, nanoparticle biopolymer biocomposites.
View Article and Find Full Text PDF