The assessment of left ventricular (LV) contractility in animal models is useful in various experimental paradigms, yet obtaining such measures is inherently challenging and surgically invasive. In a cross-species study using small and large animals, we comprehensively tested the agreement and validity of multiple single-beat surrogate metrics of LV contractility against the field-standard metrics derived from inferior vena cava occlusion (IVCO). Fifty-six rats, 27 minipigs and 11 conscious dogs underwent LV and arterial catheterization and were assessed for a range of single-beat metrics of LV contractility.
View Article and Find Full Text PDFThe ventricular-vascular relationship assesses the efficacy of energy transferred from the left ventricle to the systemic circulation and is quantified as the ratio of effective arterial elastance to maximal left ventricular elastance. This relationship is maintained during exercise via reflex increases in cardiovascular performance raising both arterial and ventricular elastance in parallel. These changes are, in part, due to reflexes engendered by activation of metabosensitive skeletal muscle afferents-termed the muscle metaboreflex.
View Article and Find Full Text PDFIntroduction: Sodium ibuprofenate in hypertonic saline (NaIHS) administered directly to the lungs by nebulization and inhalation has antibacterial and anti-inflammatory effects, with the potential to deliver these benefits to hypoxic patients. We describe a compassionate use program that offered this therapy to hospitalized COVID-19 patients.
Methods: NaIHS (50 mg ibuprofen, tid) was provided in addition to standard of care (SOC) to hospitalized COVID-19 patients until oxygen saturation levels of > 94% were achieved on ambient air.
Unlabelled: Increases in myocardial oxygen consumption during exercise mainly occur via increases in coronary blood flow (CBF) as cardiac oxygen extraction is high even at rest. However, sympathetic coronary constrictor tone can limit increases in CBF. Increased sympathetic nerve activity (SNA) during exercise likely occurs via the action of and interaction among activation of skeletal muscle afferents, central command, and resetting of the arterial baroreflex.
View Article and Find Full Text PDFWhile acute heart failure (AHF) is often regarded as a single disorder, an evolving understanding recognises the existence of multiple phenotypes with varied pathophysiological alterations. Herein we discuss hypertensive AHF and provide insight into a mechanism where acute fluid redistribution is caused by a disturbance in the ventricular-vascular coupling relationship. In this relationship, acute alterations in vascular elasticity, vasoconstriction and reflected pulse waves lead to increases in cardiac work and contribute to decompensated LV function with associated subendocardial ischaemia and end-organ damage.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2015
During dynamic exercise, muscle metaboreflex activation (MMA; induced via partial hindlimb ischemia) markedly increases mean arterial pressure (MAP), and MAP is sustained when the ischemia is maintained following the cessation of exercise (postexercise muscle ischemia, PEMI). We previously reported that the sustained pressor response during PEMI in normal individuals is driven by a sustained increase in cardiac output (CO) with no peripheral vasoconstriction. However, we have recently shown that the rise in CO with MMA is significantly blunted in hypertension (HTN).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2014
The cardiopulmonary baroreflex responds to an increase in central venous pressure (CVP) by decreasing total peripheral resistance and increasing heart rate (HR) in dogs. However, the direction of ventricular contractility change is not well understood. The aim was to elucidate the cardiopulmonary baroreflex control of ventricular contractility during normal physiological conditions via a mathematical analysis.
View Article and Find Full Text PDFObjective: Accurate, efficient and cost-effective disposition of patients presenting to emergency departments (EDs) with symptoms suggestive of acute coronary syndromes (ACS) is a growing priority. Platelet activation is an early feature in the pathogenesis of ACS; thus, we sought to obtain an insight into whether point-of-care testing of platelet function: (1) may assist in the rule-out of ACS; (2) may provide additional predictive value in identifying patients with non-cardiac symptoms versus ACS-positive patients and (3) is logistically feasible in the ED.
Design: Prospective cohort feasibility study.
Am J Physiol Heart Circ Physiol
November 2013
Sympathoactivation may be excessive during exercise in subjects with hypertension, leading to increased susceptibility to adverse cardiovascular events, including arrhythmias, infarction, stroke, and sudden cardiac death. The muscle metaboreflex is a powerful cardiovascular reflex capable of eliciting marked increases in sympathetic activity during exercise. We used conscious, chronically instrumented dogs trained to run on a motor-driven treadmill to investigate the effects of hypertension on the mechanisms of the muscle metaboreflex.
View Article and Find Full Text PDFCalsequestrin-2 (CSQ2) is a resident glycoprotein of junctional sarcoplasmic reticulum that functions in the regulation of SR Ca(2+) release. CSQ2 is biosynthesized in rough ER around cardiomyocyte nuclei and then traffics transversely across SR subcompartments. During biosynthesis, CSQ2 undergoes N-linked glycosylation and phosphorylation by protein kinase CK2.
View Article and Find Full Text PDFMuscle metaboreflex activation (MMA) during submaximal dynamic exercise in normal individuals increases mean arterial pressure (MAP) via increases in cardiac output (CO) with little peripheral vasoconstriction. The rise in CO occurs primarily via increases in heart rate (HR) with maintained or slightly increased stroke volume. When the reflex is sustained during recovery (postexercise muscle ischemia, PEMI), HR declines yet MAP remains elevated.
View Article and Find Full Text PDFMuscle metaboreflex activation (MMA) during dynamic exercise increases cardiac work and myocardial O2 demand via increases in heart rate, ventricular contractility, and afterload. This increase in cardiac work should lead to metabolic coronary vasodilation; however, no change in coronary vascular conductance occurs. This indicates that the MMA-induced increase in sympathetic activity to the heart, which raises heart rate, ventricular contractility, and cardiac output, also elicits coronary vasoconstriction.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2012
We tested whether mild and moderate dynamic exercise and muscle metaboreflex activation (MMA) affect dynamic baroreflex control of heart rate (HR) and cardiac output (CO), and the influence of stroke volume (SV) fluctuations on CO regulation in normal (N) and pacing-induced heart failure (HF) dogs by employing transfer function analyses of the relationships between spontaneous changes in left ventricular systolic pressure (LVSP) and HR, LVSP and CO, HR and CO, and SV and CO at low and high frequencies (Lo-F, 0.04-0.15 Hz; Hi-F, 0.
View Article and Find Full Text PDFArterial blood pressure (ABP) short term variability is due to beat-by-beat fluctuations in cardiac output (CO) and total peripheral resistance (TPR), which have distinct effects at low and high frequencies. In particular, it was shown that CO is able to buffer TPR slow oscillations in the LF band, but it has not been addressed if CO can contribute to oscillations of ABP in this band. In this paper, we propose a model for the identification of ABP variability sources, in order to show evidence that CO fluctuations are not a source of ABP LF oscillations, but they only buffer ABP variability of vasomotor origin.
View Article and Find Full Text PDFBackground: Emerging evidence suggests that "adaptive" induction of autophagy (the cellular process responsible for the degradation and recycling of proteins and organelles) may confer a cardioprotective phenotype and represent a novel strategy to limit ischemia-reperfusion injury. Our aim was to test this paradigm in a clinically relevant, large animal model of acute myocardial infarction.
Methods And Results: Anesthetized pigs underwent 45 minutes of coronary artery occlusion and 3 hours of reperfusion.
We investigated to what extent maximal ventricular elastance (E(max)) is dynamically controlled by the arterial baroreflex and force-frequency relation in conscious dogs and to what extent these mechanisms are attenuated after the induction of heart failure (HF). We mathematically analyzed spontaneous beat-to-beat hemodynamic variability. First, we estimated E(max) for each beat during a baseline period using the ventricular unstressed volume determined with the traditional multiple beat method during vena cava occlusion.
View Article and Find Full Text PDFMuscle metaboreflex activation during dynamic exercise induces a substantial increase in cardiac work and oxygen demand via a significant increase in heart rate, ventricular contractility, and afterload. This increase in cardiac work should cause coronary metabolic vasodilation. However, little if any coronary vasodilation is observed due to concomitant sympathetically induced coronary vasoconstriction.
View Article and Find Full Text PDFIschemia of active skeletal muscle elicits a pressor response termed the muscle metaboreflex. We tested the hypothesis that in normal dogs during dynamic exercise, graded muscle metaboreflex activation (MMA) would progressively attenuate spontaneous heart rate baroreflex sensitivity (SBRS). The animals were chronically instrumented to measure heart rate (HR), cardiac output (CO), mean and systolic arterial pressure (MAP and SAP), and left ventricular systolic pressures (LVSP) at rest and during mild or moderate treadmill exercise before and during progressive MMA [via graded reductions of hindlimb blood flow (HLBF)].
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
We identified the transfer functions relating beat-to-beat fluctuations in arterial blood pressure to maximal ventricular elastance (ABP-->E(max)) and beat-to-beat fluctuations in heart rate to E(max) (HR-->E(max)) to characterize the dynamic properties of the arterial ventricular contractility baroreflex and force-frequency relation, respectively, in three conscious dogs before and after pacing-induced heart failure. During the control condition, the average gain value, dominant time constant, and time delay were respectively -0.0374 ml(-1), 12.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
We performed a pilot investigation of the cardiopulmonary baroreflex control of ventricular contractility in two conscious dogs. We specifically measured spontaneous beat-to-beat hemodynamic variability before and after the administration of propranolol. We then identified the transfer function relating beat-to-beat fluctuations in central venous pressure (CVP) to maximal ventricular elastance (E(max)) to characterize the cardiopulmonary baroreflex control of ventricular contractility, while accounting for the influences of arterial blood pressure fluctuations on E(max) via the arterial baroreflex and heart rate fluctuations on E(max) via the force-frequency relation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2010
Muscle metaboreflex activation during submaximal dynamic exercise in normal subjects elicits a pressor response primarily due to increased cardiac output (CO). However, when the ability to increase CO is limited, such as in heart failure or during maximal exercise, the muscle metaboreflex-induced increases in arterial pressure occur via peripheral vasoconstriction. How the mechanisms of this pressor response are altered is unknown.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2008
Dynamic cardiac baroreflex responses are frequently investigated by analyzing the spontaneous reciprocal changes in arterial pressure and heart rate (HR). However, whether the spontaneous baroreflex-induced changes in HR translate into changes in cardiac output (CO) is unknown. In addition, this linkage between changes in HR and changes in CO may be different in subjects with heart failure (HF).
View Article and Find Full Text PDFWe have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
We have previously proposed a technique for estimating the static gain values and impulse response of the arterial and cardiopulmonary total peripheral resistance (TPR) baroreflex by mathematical analysis of beat-to-beat fluctuations in arterial blood pressure, cardiac output, and stroke volume. In this study, we evaluated the technique with respect to spontaneous hemodynamic variability measured from seven conscious dogs before and after chronic arterial baroreceptor denervation. Our results show that the technique correctly predicted the alterations in TPR baroreflex functioning that are known to occur following the baroreceptor denervation.
View Article and Find Full Text PDF