Publications by authors named "Javier A Muniz"

Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein predominantly expressed in neurons, which participates in microtubule polymerization and axonal transport. Abnormal tau metabolism leads to neurodegenerative diseases named tauopathies, such as Alzheimer's disease and frontotemporal dementia. The alternative splicing of exon 10 (E10) in the primary transcript produces tau protein isoforms with three (3R) or four (4R) microtubule binding repeats, which are found in equal amounts in the normal adult human brain.

View Article and Find Full Text PDF

Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein tau (MAPT), which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in MAPT pre-mRNA produces equal amounts of protein isoforms with either three (3R) or four (4R) microtubule binding domains. Imbalance in the 3R:4R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration.

View Article and Find Full Text PDF

Psychostimulant drugs, such as modafinil and caffeine, induce transcriptional alterations through the dysregulation of epigenetic mechanisms. We have previously demonstrated that acute modafinil administration is accompanied by multiple changes in the expression of histone deacetylases (HDACs) within the mouse medial prefrontal cortex (mPFC). Herein, we compared alterations in class IIa HDACs in the mouse mPFC and dorsal striatum (DS) after a single exposure to each psychostimulant.

View Article and Find Full Text PDF

Caffeine is the world's most popular psychostimulant and is frequently used as an active adulterant in many illicit drugs including cocaine. Previous studies have shown that caffeine can potentiate the stimulant effects of cocaine and cocaine-induced drug seeking behavior. However, little is known about the effects of this drug combination on reward-related learning, a key process in the maintenance of addiction and vulnerability to relapse.

View Article and Find Full Text PDF

Caffeine is the world's most popular psychoactive drug and is also an active adulterant found in many drugs of abuse, including seized cocaine samples. Despite several studies which examine the effects of caffeine or cocaine administered as single agents, little data are available for these agents when given in combination. The purpose of the present study was to determine if combined intake of both psychostimulants can lead to maladaptive changes in striatal function.

View Article and Find Full Text PDF

This review describes the interactions between the pedunculopontine nucleus (PPN), the ventral tegmental area (VTA), and the thalamocortical system. Experiments using modulators of cholinergic receptors in the PPN clarified its role on psychostimulant-induced locomotion. PPN activation was found to be involved in the animal's voluntary search for psychostimulants.

View Article and Find Full Text PDF

Several organ systems can be affected by psychostimulant toxicity. However, there is not sufficient evidence about the impact of psychostimulant intake on testicular physiology and catecholaminergic systems. The aim of the present study was to further explore potential toxic consequences of chronic exposure to cocaine, caffeine, and their combination on testicular physiology.

View Article and Find Full Text PDF

Psychostimulant addiction is associated with dysfunctions in frontal cortex. Previous data demonstrated that repeated exposure to methamphetamine (METH) can alter prefrontal cortex (PFC)-dependent functions. Here, we show that withdrawal from repetitive non-contingent METH administration (7 days, 1 mg/kg) depressed voltage-dependent calcium currents (ICa ) and increased hyperpolarization-activated cation current (IH ) amplitude and the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) in deep-layer pyramidal mPFC neurons.

View Article and Find Full Text PDF

Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models.

View Article and Find Full Text PDF