Background: The genus Sphingobium within the class Alpha-proteobacteria contains a small number of plant-growth promoting rhizobacteria (PGPR), although it is mostly comprised of organisms that play an important role in biodegradation and bioremediation in sediments and sandy soils. A Sphingobium sp. isolate was obtained from the rhizosphere of the beachgrass Ammophila breviligulata with a variety of plant growth-promoting properties and designated as Sphingobium sp.
View Article and Find Full Text PDFsp. strain AEW4 is a novel isolate from rhizosphere soil attached to the root of the American beachgrass The genomic sequence consisted of 4,678,518 bp and 4,428 protein-coding sequences. Here we report the draft genome sequence of this strain and some initial insights on its plant growth-promoting capabilities.
View Article and Find Full Text PDFMetagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization.
View Article and Find Full Text PDFMicrobiological, genomic and transcriptomic analyses were used to examine three species from the bacterial genus Caldicellulosiruptor with respect to their capacity to convert the carbohydrate content of lignocellulosic biomass at 70°C to simple sugars, acetate, lactate, CO2, and H2. Caldicellulosiruptor bescii, C. kronotskyensis, and C.
View Article and Find Full Text PDFClostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain.
View Article and Find Full Text PDFThe genus Caldicellulosiruptor contains extremely thermophilic, cellulolytic bacteria capable of lignocellulose deconstruction. Currently, complete genome sequences for eleven Caldicellulosiruptor species are available. Here, we report genome sequences for three additional Caldicellulosiruptor species: Rt8.
View Article and Find Full Text PDFBackground: Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum.
Results: Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C.
We announce the genome sequence of Serratia plymuthica strain RVH1, a psychroloterant strain that was isolated from a raw vegetable-processing line and that regulates the production of primary metabolites (acetoin and butanediol), antibiotics, and extracellular enzymes through quorum sensing.
View Article and Find Full Text PDFAn automated repetitive batch fermentation system was developed to facilitate the study of microbial cellulose utilization. The system was operated with Avicel as the carbon source and either Clostridium thermocellum ATCC 27405 or a consortium enriched from compost as inocula. Multiple cycles of growth medium addition, incubation, and medium removal were performed with each inoculum.
View Article and Find Full Text PDFThe affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C.
View Article and Find Full Text PDFWe report the genome sequence of Clostridium sp. strain DL-VIII, a novel Gram-positive, endospore-forming, solventogenic bacterium isolated from activated anaerobic sludge of a wastewater treatment plant. Aside from a complete sol operon, the 6,477,357-bp genome of DL-VIII reveals genes for several unique enzymes with applications in lignocellulose degradation, including two phenolic acid decarboxylases.
View Article and Find Full Text PDFWe present the full genome sequence of Clostridium sp. strain BNL1100, a Gram-positive, endospore-forming, lignocellulolytic bacterium isolated from a corn stover enrichment culture. The 4,613,747-bp genome of strain BNL1100 contains 4,025 putative protein-coding genes, of which 103 are glycoside hydrolases, the highest detected number in cluster III clostridia.
View Article and Find Full Text PDFBackground: Clostridium thermocellum is an anaerobic thermophilic bacterium that exhibits high levels of cellulose solublization and produces ethanol as an end product of its metabolism. Using cellulosic biomass as a feedstock for fuel production is an attractive prospect, however, growth arrest can negatively impact ethanol production by fermentative microorganisms such as C. thermocellum.
View Article and Find Full Text PDFClostridium clariflavum is a Cluster III Clostridium within the family Clostridiaceae isolated from thermophilic anaerobic sludge (Shiratori et al, 2009). This species is of interest because of its similarity to the model cellulolytic organism Clostridium thermocellum and for the ability of environmental isolates to break down cellulose and hemicellulose. Here we describe features of the 4,897,678 bp long genome and its annotation, consisting of 4,131 protein-coding and 98 RNA genes, for the type strain DSM 19732.
View Article and Find Full Text PDFThe enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with minor representation of clostridial clusters I and XIV and a novel Lutispora species cluster.
View Article and Find Full Text PDFThe diversity of nitrogen-fixing bacteria is well described for aquatic environments; however, terrestrial analyses remain mostly biased to rhizobial plant-microbe associations. We maximized the level of resolution for this study through the use of nucleotide sequence information extracted from a series of soil microenvironments, ranging from macroaggregates at 2000 microm to the clay fraction at < 75 microm in diameter. In addition, we attempted to create an overview of the distribution of terrestrial nitrogen fixers across such microenvironments by combining culture-independent techniques with a suite of natural soil environments from uniquely different origins.
View Article and Find Full Text PDF