Disabil Rehabil Assist Technol
October 2024
Purpose: The manual, user-operated Arise Standing Wheelchair (SWC) is the end result of multiple design iterations based on findings and feedback from user trials. The Arise SWC provides standing functionality, outdoor mobility, affordability, and customisability. This paper describes a long-term community integration study of the Arise SWC.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
August 2024
Purpose: Steering a wheelchair while navigating through manual doors or against obstacles is challenging for some users. Previously, a low-cost, low-tech accessory made using off-the-shelf components, conventional manufacturing, and 3D-printed fasteners demonstrated the proof-of-concept for uncrossable positive obstacle pushing or gliding. Current work presents the fabrication and testing of an entirely 3D-printed prototype of the accessory.
View Article and Find Full Text PDFThe recognition of emotions is one of the most challenging issues in human-computer interaction (HCI). EEG signals are widely adopted as a method for recognizing emotions because of their ease of acquisition, mobility, and convenience. Deep neural networks (DNN) have provided excellent results in emotion recognition studies.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
November 2023
Purpose: The manual user-operated Arise Standing Wheelchair (SWC) is the end-result of multiple design iterations based on comments from user trials. The Arise SWC provides standing functionality, outdoor mobility, affordability, and customizability. This paper describes a user experience study of the Arise SWC's pre-commercial version.
View Article and Find Full Text PDFWearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
October 2023
Purpose: Assistive devices like Standing Wheelchairs (SWC) have remained out of reach of the economically underprivileged even before the pandemic-induced financial downturn, and more so now. This paper describes the mechanical design of a manual user-actuated SWC that is cost-effective (equivalent of USD 210 in India, ex-factory) and has special features that minimise user effort and accommodates varying body weights (50-110 kg) and dimensions (1.52-1.
View Article and Find Full Text PDFJ Rehabil Assist Technol Eng
August 2021
Aim: Intense training of arm movements using robotic devices can help reduce impairments in stroke. Recent evidence indicates that independent training of individual joints of the arm with robots can be as effective as coordinated multi-joint arm training. This makes a case for designing and developing robots made for training individual joints, which can be simpler and more compact than the ones for coordinate multi-joint arm training.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
July 2023
Purpose: Only 1 in 10 people with disabilities can access assistive devices, underlining the critical need for low-cost assistive products. This paper describes the design evolution of a manual user-operated standing wheelchair (SWC), translating from prototype to product.
Methods: The SWC design has been refined over 5 years through multiple iterations based on comments from user trials.
Motorized designs of stair-climbing wheelchairs available in western countries are heavy and expensive, and hence, unsuitable for developing countries. Manually operated solutions for stair-climbing wheelchairs also tend to be bulky and complex. As stair-climbing is an occasional activity for wheelchair users, having a built-in stair-climbing mechanism results in complexity and redundancy.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
November 2019
Some wheelchair users continue to struggle in maneuvering a wheelchair and navigating through manual doors. Several smart wheelchairs and robotic manipulators were developed to minimize such challenges facing disabled people. Disappointingly, a majority of these high-tech solutions are restricted to laboratories and are not extensively available as commercial products.
View Article and Find Full Text PDFAssist Technol
October 2019
Independent mobility is vital to individuals of all ages, and wheelchairs have proven to be great personal mobility devices. The tasks of opening and navigating through a door are trivial for healthy people, while the same tasks could be difficult for some wheelchair users. A wide range of intelligent wheelchair controllers and systems, robotic arms, or manipulator attachments integrated with wheelchairs have been developed for various applications, including manipulating door knobs.
View Article and Find Full Text PDFCell patterning has emerged as an elegant tool in developing cellular arrays, bioreactors, biosensors, and lab-on-chip devices and for use in engineering neotissue for repair or regeneration. In this study, micropatterned surfaces were created using the layer-by-layer lift-off (LbL-LO) method for analyzing canine chondrocytes response to patterned substrates. Five materials were chosen based on our previous studies.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
May 2009
Bridging top-down and bottom-up manufacturing approaches is desirable to exploit the advantages of both approaches. A simple method that combines microfabrication technique with layer-by-layer self-assembly for in situ fabrication of supported nanocomposite membrane structures is presented. To our knowledge, our approach has yielded the largest nanocomposite membrane size.
View Article and Find Full Text PDFA microfluidic device to perfuse pancreatic islets while simultaneously characterizing their functionality through fluorescence imaging of the mitochondrial membrane potential and intracellular calcium ([Ca(2+)](i)) in addition to enzyme linked immunosorbent assay (ELISA) quantification of secreted insulin was developed and characterized. This multimodal characterization of islet function will facilitate rapid assessment of tissue quality immediately following isolation from donor pancreas and allow more informed transplantation decisions to be made which may improve transplantation outcomes. The microfluidic perfusion chamber allows flow rates of up to 1 mL min(-1), without any noticeable perturbation or shear of islets.
View Article and Find Full Text PDFFabrication of multicomponent patterned films comprising polymer/nanoparticle multilayers using conventional lithography and bottom-up layer-by-layer nanofabrication techniques is described. The work is motivated by the potential to extend polymer surface micromachining capabilities toward construction of integrated systems by connecting discrete domains of active materials containing functional nanoparticles. Modified surfaces illustrate tunability of the physical (thickness, roughness, 3D structures) and chemical (inorganic/organic material combinations) properties of the nanocomposite micropatterns.
View Article and Find Full Text PDFWe have demonstrated the fabrication of a two-level microfluidic device that can be easily integrated with existing electrophysiology setups. The two-level microfluidic device is fabricated using a two-step standard negative resist lithography process. The first level contains microchannels with inlet and outlet ports at each end.
View Article and Find Full Text PDFWe have developed a microfluidic brain slice device (microBSD) that marries an off-the shelf brain slice perfusion chamber with an array of microfluidic channels set into the bottom surface of the chamber substrate. As this device is created through rapid prototyping, once optimized, it is trivial to replicate and share the devices with other investigators. The device integrates seamlessly into standard physiology and imaging chambers and it is immediately available to the whole slice physiology community.
View Article and Find Full Text PDFRapid prototyping (RP) is a useful method for designing and fabricating a wide variety of devices used for neuroscience research. The present study confirms the utility of using fused deposition modeling, a specific form of RP, to produce three devices commonly used for basic science experimentation. The accuracy and precision of the RP method varies according to the type and quality of the printer as well as the thermoplastic substrate.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
June 2007
Methods for producing biomaterial patterns with defined spatial distribution micro- and nano-scale features are important for studying the cellular-level interactions, including basic cell-to-material and cell-to-cell communications. This work reports on the fabrication of substrates to study cell adhesion to multicomponent micropatterns of multilayer films by coupling conventional photolithography and LbL techniques, known as the L-LbL technique. Toward this end, substrates with nanofilm micropatterns of two different bio-functionalities have been fabricated for sPLA/sub 2/ and PLL and were used for in vitro cell-culture studies using neurons, which exhibited preferential and high efficiency and selective adhesion to sPLA/sub 2/ nanofilms.
View Article and Find Full Text PDFMicropatterns of different biomaterials with micro- and nanoscale features and defined spatial arrangement on a single substrate are useful tools for studying cellular-level interactions, and recent reports have highlighted the strong influence of scaffold compliance in determining cell behavior. In this paper, a simple yet versatile and precise patterning technique for the fabrication of interdigitated micropatterns of nanocomposite multilayer coatings on a single substrate is demonstrated through a combination of lithography and layer-by-layer (LbL) assembly processes, termed polymer surface micromachining (PSM). The first nanofilm pattern is constructed using lithography, followed by LbL multilayer assembly and lift-off, and the process is repeated with optical alignment to obtain interdigitated patterns on the same substrate.
View Article and Find Full Text PDF