Angew Chem Int Ed Engl
July 2015
The single-step preparation of highly ordered mesoporous silica hybrid nanocomposites with conjugated polymers was explored using a novel cationic 3,4-propylenedioxythiophene (ProDOT) surfactant (PrS). The method does not require high-temperature calcination or a washing procedure. The combination of self-assembly of the silica surfactant and in situ polymerization of the ProDOT tail is responsible for creation of the mesoporosity with ultralarge pores, large pore volume, and electroactivity.
View Article and Find Full Text PDFEuropium doped cadmium sulphide (Cd(0.98)Eu(0.2)S) nanostructures were synthesised by chemical co-precipitation method using ethylene glycol (EG) and deionized water (Eu:CdS-1), and isopropyl alcohol (IPA) and deionized water (Eu:CdS-2) as mixed solvents.
View Article and Find Full Text PDFWe introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution.
View Article and Find Full Text PDF