Publications by authors named "Javad Shamsi"

All-inorganic metal halide perovskite nanocrystals (PeNCs) show great potential for the next generation of perovskite light-emitting diodes (PeLEDs). However, trap-assisted recombination negatively impacts the optoelectronic properties of PeNCs and prevents their widespread adoption for commercial exploitation. To mitigate trap-assisted recombination and further enhance the external quantum efficiency of PeLEDs, A/B-site doping has been widely investigated to tune the bandgap of PeNCs.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) are exceptional semiconductors best known for their intriguing properties, such as high absorption coefficients, tunable bandgaps, excellent charge transport, and high luminescence yields. Among various MHPs, all-inorganic perovskites exhibit benefits over hybrid compositions. Notably, critical properties, including chemical and structural stability, could be improved by employing organic-cation-free MHPs in optoelectronic devices such as solar cells and light-emitting devices (LEDs).

View Article and Find Full Text PDF

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications.

View Article and Find Full Text PDF

Optoelectronic devices based on lead halide perovskites are processed in facile ways, yet are remarkably efficient. There are extensive research efforts investigating lead-free perovskite and perovskite-related compounds, yet there are challenges to synthesize these materials in forms that can be directly integrated into thin film devices rather than as bulk powders. Here, we report on the colloidal synthesis and characterization of lead-free, antifluorite CsZrX (X = Cl, Br) nanocrystals that are readily processed into thin films.

View Article and Find Full Text PDF

Inorganic lead halide perovskites are promising candidates for optoelectronic applications, due to their high photoluminescence quantum yield and narrow emission line widths. Particularly attractive is the possibility to vary the bandgap as a function of the halide composition and the size or shape of the crystals at the nanoscale. Here we present an aberration-corrected scanning transmission electron microscopy (STEM) and monochromated electron energy-loss spectroscopy (EELS) study of extended nanosheets of CsPbBr3.

View Article and Find Full Text PDF

Quantum-confined CsPbBr nanoplatelets (NPLs) are extremely promising for use in low-cost blue light-emitting diodes, but their tendency to coalesce in both solution and film form, particularly under operating device conditions with injected charge-carriers, is hindering their adoption. We show that employing a short hexyl-phosphonate ligand (CHOP) in a heat-up colloidal approach for pure, blue-emitting quantum-confined CsPbBr NPLs significantly suppresses these coalescence phenomena compared to particles capped with the typical oleyammonium ligands. The phosphonate-passivated NPL thin films exhibit photoluminescence quantum yields of ∼40% at 450 nm with exceptional ambient and thermal stability.

View Article and Find Full Text PDF

We demonstrate patterning of metal surfaces based on lift-off of perovskite nanocrystals that enables the fabrication of nanometer-size features without the use of resist-based nanolithography. The perovskite nanocrystals act as templates for defining the shape of the apertures in metal layers, and we exploit the variety of sizes and shapes that can be controlled in the colloidal synthesis to demonstrate the fabrication of nanoholes, nanogaps and guides with size smaller than the wavelength of light in the visible spectrum. The process can be readily integrated with standard lithography and etching techniques for the creation of more complex structures.

View Article and Find Full Text PDF

Two-dimensional colloidal halide perovskite nanocrystals are promising materials for light-emitting applications. Recent studies have focused on nanoplatelets that are able to self-assemble and transform on solid substrates. However, the mechanism behind the process and the atomic arrangement of their assemblies remain unclear.

View Article and Find Full Text PDF

Lead halide perovskites, owing to their flexible, scalable chemistry and promising physical properties are attracting increasing attention for solution-processed optoelectronic and photonic technologies. Despite their well-known 'defect tolerant' electronic structure, studies highlighted the active role of shallow and deep defect states, as well as of oxidative environmental conditions, on the optical and electrical behavior of perovskite nanocubes, films and single bulk crystals. To date, however, no in-depth systematic study of the surface trap-mediated processes in perovskite materials of different dimensionality has been conducted.

View Article and Find Full Text PDF

Metal halide perovskites represent a flourishing area of research, which is driven by both their potential application in photovoltaics and optoelectronics and by the fundamental science behind their unique optoelectronic properties. The emergence of new colloidal methods for the synthesis of halide perovskite nanocrystals, as well as the interesting characteristics of this new type of material, has attracted the attention of many researchers. This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed.

View Article and Find Full Text PDF

Cesium lead halide perovskite (CsPbX, with X = Br, Cl, I) nanocrystals have been found to undergo severe modifications under the high-energy electron beam irradiation of a transmission electron microscope (80/200 keV). In particular, in our previous work, together with halogen desorption, Pb ions were found to be reduced to Pb and then diffused to form lead nanoparticles at temperatures above -40 °C. Here, we present a detailed irradiation study of CsPbBr nanocrystals at temperatures below -40 °C, a range in which the diffusion of Pb atoms/clusters is drastically suppressed.

View Article and Find Full Text PDF

Lead halide perovskite nanocrystals are an emerging class of materials that have gained wide interest due to their facile color tuning and high photoluminescence quantum yield. However, the lack of techniques to translate the high performance of nanocrystals into solid films restricts the successful exploitation of such materials in optoelectronics applications. Here, we report a heat-up and large-scale synthesis of quantum-confined, blue-emitting CsPbBr nanoplatelets (NPLs) that self-assemble into stacked lamellar structures.

View Article and Find Full Text PDF

An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes.

View Article and Find Full Text PDF

We report chemical routes for the synthesis of both nanocrystals and bulk crystals of methylammonium (MA) lead halide perovskites employing -methylformamide (NMF) as a source of MA ions. Colloidal nanocrystals were prepared by a transamidation reaction between NMF and an alkyl amine (oleylamine). The nanocrystals showed photoluminescence quantum yields reaching 74% for MAPbBr and 60% for MAPbI.

View Article and Find Full Text PDF

3D LSG/CoNiS//LSG interdigitated microelectrodes have been firstly developed by a facile, scalable and low cost process for all-solid-state, flexible integrated asymmetric micro-supercapacitors. These devices can achieve energy densities of up to 49 W h l which is comparable to those of lead acid batteries.

View Article and Find Full Text PDF

We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine).

View Article and Find Full Text PDF

A highly sensitive chemiluminescence (CL) method for the determination of 2-chloroethyl ethyl sulfide (2-CEES) was presented. It was found that 2-chloroethyl ethyl sulfide (2-CEES) could inhibit the CL of the luminol-AgNO3 system in the presence of silver nanoparticles in alkaline solution, which made it applicable for determination of 2-CEES. The presented method is simple, convenient, rapid and sensitive.

View Article and Find Full Text PDF

In this study, a method for extraction and preconcentration trace amounts of organophosphorus pesticides (OPPs) in environmental water was developed using magnetic solid phase extraction (magnetic-SPE) followed by high performance liquid chromatography (HPLC) with UV detection. Magnetite octadecylsilane nanoparticles were synthesized and characterized by X-ray diffraction, FTIR spectroscopy, vibrating sample magnetometry and scanning electron microscopy. These nanoparticles were applied for extraction and preconcentration of OPPs (residues of diazinon and fenitrothion, which are the most-widely used for pest control in Iran) in environmental water samples at low ng mL(-1) concentration as magnetic-SPE adsorbent.

View Article and Find Full Text PDF