Publications by authors named "Javad Safari"

We designed a geometrical solution for a small animal in-beam positron emission tomography (PET) scanner to be used in the project SIRMIO (Small animal proton irradiator for research in molecular image-guided radiation-oncology). The system is based on 56 scintillator blocks of pixelated LYSO crystals. The crystals are arranged providing a pyramidal-step shape to optimize the geometrical coverage in a spherical configuration.

View Article and Find Full Text PDF

In this study, an efficient, rapid and simple plant-mediated green sol-gel auto-combustion procedure was presented to synthesis magnesium-cobalt ferrite (MgCoFeO) nanocatalyst using an aqueous extract of apple skins as a chelating/combustion agent. The catalyst was assessed by multiple techniques, including FT-IR, XRD, FE-SEM, EDS, elemental mapping, TGA-DTA and VSM. Then, the catalytic potential of the as-prepared MgCoFeO nanocatalyst was examined in the three-component condensation reaction of 1,3-dimethyl barbituric acid, aldehydes and malononitrile for the one-pot synthesis of pyrano[2,3-d]pyrimidinedione and their bis-derivatives.

View Article and Find Full Text PDF

Chitosan-modified magnetic carbon nanotubes (CS-MCNTs) were synthesized and were investigated by FT-IR, EDX, FE-SEM, elemental analysis, XRD, VSM and TGA. In order to synthesize the CS-MCNTs composites, Fe3O4 decorated carbon nanotubes (CNTs-Fe3O4) were modified with a silica layer by the ammonia-catalysed hydrolysis of tetraethyl orthosilicate (CNTs-Fe3O4@SiO2). Then, CS-MCNTs were successfully grafted on the surface of CNTs-Fe3O4@SiO2via a suspension cross-linking method.

View Article and Find Full Text PDF

Fe3O4 nanoparticles were prepared by chemical coprecipitation method. Subsequently immobilization of chitosan on Fe3O4 nanoparticles was accomplished and afforded magnetic Fe3O4-chitosan nanoparticles. Synthesized nanoparticles was found to be a magnetic and heterogeneous catalyst for a one-pot and efficient synthesis of 2-amino-4H-chromenes by condensation of aldehydes with malononitrile and resorcinol under ultrasound irradiation as an ecofriendly method.

View Article and Find Full Text PDF

The ionic liquid 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium acetate was immobilized on the Fe3O4 nanoparticles (MNPs-IL-OAc) and used as an efficient new heterogeneous nanocatalyst for the one-pot multi-component synthesis of 1-amidoalkyl-2-naphthols under ultrasound irradiation. The advantages of present combined method are the use of a low scale catalyst, easier work-up procedure, waste-free, green and efficient synthetic entry to excellent yield of products in a high reusability and a short reaction time.

View Article and Find Full Text PDF

An efficient four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles is described by one-step condensation of an aldehyde, benzil, ammonium acetate and primary aromatic amine with nanocrystalline magnesium aluminate in ethanol under ultrasonic irradiation. High yields, short reaction times, mild conditions, simplicity of operation and easy work-up are some advantages of this protocol.

View Article and Find Full Text PDF

Fe(3)O(4) nanoparticles were prepared by chemical coprecipitation method and subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. Grafting of chlorosulfuric acid on the amino-functionalized Fe(3)O(4) nanoparticles afforded sulfamic acid-functionalized magnetic nanoparticles (SA-MNPs). SA-MNPs was found to be a mild and effective solid acid catalyst for the efficient, one-pot, three-component synthesis of 2,4,5-trisubstituted imidazoles under ultrasound irradiation.

View Article and Find Full Text PDF

A green and simple approach to assembling of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds via three-component reaction of kojic acid, malononitrile, and aromatic aldehydes in aqueous media under ultrasound irradiation is described. The combinatorial synthesis was achieved for this methodology with applying ultrasound irradiation while making use of water as green solvent. In comparison to conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and selectivity without the need for a transition metal or base catalyst are prominent features of this green procedure.

View Article and Find Full Text PDF

A green and convenient approach to the synthesis of 2-amino-4,6-diphenylnicotinonitriles via four-component reaction of malononitrile, aromatic aldehydes, acetophenone derivatives and ammonium acetate in water under ultrasound irradiation is described. The combinatorial synthesis was achieved for this methodology with applying ultrasound irradiation while making use of water as green solvent. In comparison to conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and selectivity without the need for a transition metal or base catalyst are prominent features of this sonocatalyzed procedure.

View Article and Find Full Text PDF

To obtain a rapid, efficient and mild synthesis of 5,5-diphenylhydantoin and 5,5-diphenyl-2-thiohydantoin derivatives, ultrasonic irradiation has been applied to the reaction mixtures containing substituted benzils and urea or thiourea derivatives catalyzed by KOH in DMSO/H(2)O, which allowed us to achieve products at room temperature in a good yield and short time without any side product. This convenient procedure will allow a further increase of the diversity within the hydantoin family.

View Article and Find Full Text PDF