Background: Detection of elements in individual cells by inductively coupled plasma (ICP) spectrometry has recently attracted significant interest in biological research, due to the unique ability of ICP spectrometry for trace element analysis. However, performing single-cell analysis using ICP optical emission spectrometry (ICP-OES) remains a challenge due to the small size and discrete nature of cells. This is while ICP-OES can serve as a cost-effective and label-free method for this purpose.
View Article and Find Full Text PDFSignificant advancement has been achieved in single-particle analysis with the new conical ICP torch in terms of sensitivity, precision, and throughput. Monodisperse desolvated particles of eight elements (Na, Al, Ag, Sr, Ca, Mg, Fe, and Be) were injected into the conical torch, and signal peak characteristics, precision, and kinetics of atomization and ionization were investigated with optical spectrometry. A particle introduction system was designed to ensure a smooth and uninterrupted delivery of desolvated particles to the plasma.
View Article and Find Full Text PDFHypothesis: Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures.
View Article and Find Full Text PDFA completely new ICP torch for optical/mass spectrometry is introduced with a conical geometry leading to significant reduction in gas and power consumption. As a new holistic methodology, the torch has been designed on the basis of fluid flow patterns, heat transfer, plasma physics, and analytical performance. Computer simulations, capable of accounting for magneto-hydrodynamic effects, have been used to optimize torch geometry.
View Article and Find Full Text PDFApproximately 200 000 Canadians acquire healthcare-associated bacterial infections each year and several-fold more acquire food-borne bacterial illnesses. Bacterial spores are particularly problematic because they can survive on surfaces for several months. Owing to its sporicidal activity, copper alloy sheet metal is sometimes used in hospital settings, but its widespread use is limited by cost and incompatibility with complex furniture and instrument designs and topographies.
View Article and Find Full Text PDFThis work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2014
Experiments were done to observe the coalescence of highly viscous liquid droplets (87 wt% glycerin-in-water solutions) deposited onto a flat, solid steel plate. Droplets were deposited sequentially in straight lines or square droplet arrays. Droplet center-to-center distance was varied and the final dimensions of lines and sheets measured from photographs.
View Article and Find Full Text PDF