Neurotransmitters and their receptors are key molecules in information transfer between neurons, thus enabling inter-areal communication. Therefore, multimodal atlases integrating the brain's cyto- and receptor architecture constitute crucial tools to understand the relationship between its structural and functional segregation. Cholinergic muscarinic M receptors have been shown to be an evolutionarily conserved molecular marker of primary sensory areas in the mammalian brain.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2022
Alzheimer's disease (AD) is a common neurodegenerative disease with a prevalence estimated to reach 115 million by 2050. It is characterized by abnormal extracellular accumulation of amyloid‑beta (Aβ) peptide and intracellular neurofibrillary tangles (NFTs) that result in neuro‑inflammation, synaptic dysfunction, neurotransmitter imbalance, neuronal loss, and dendritic changes. A hypothesis of neurotrophic factor (NTF) involvement in neurodegenerative diseases and their potential as a therapeutic tool has emerged.
View Article and Find Full Text PDFNumerous studies in the last decades have provided evidence for the existence of a local renin-angiotensin system (RAS) in the central nervous system (CNS). Widespread distribution of the different RAS components in the brain demonstrates the pleiotropic role of this system in the structure and function of CNS. With the advent of new molecular techniques, a novel receptor has been identified within the beneficial arm of the RAS, the Mas-related G-protein coupled receptor D (MrgD), which can be stimulated by two heptapeptides, Ala-(Ang-(1-7), also named alamandine, and Ang-(1-7).
View Article and Find Full Text PDFN-methyl-d-aspartate receptors (NMDARs) are expressed abundantly in the brain and play a crucial role in the regulation of central nervous system (CNS) development, learning, and memory. During early neuronal development, NMDARs modulate neurogenesis, neuronal differentiation and migration, and synaptogenesis. The present study aimed to examine the developmental expression of NMDARs subunits, NR1 and NR2B, in the developing hippocampus of neonatal rats during the first two postnatal weeks.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1007/s11011-021-00779-4.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF), as a member of neurotrophin family, plays an important role in neurogenesis, neuronal survival and synaptic plasticity. BDNF is strongly expressed in the hippocampus, where has been associated with memory consolidation, learning, and cognition. In this study, Real-time PCR, immunohistochemistry, and stereology were used to evaluate the gender differences and left-right asymmetries in the expression of BDNF in the developing rat hippocampus during the neurogenesis-active period, at postnatal days P0, P7 and P14.
View Article and Find Full Text PDFThe objective of this study was to assess the effects of the hydroalcoholic extract of flax seed on the teratogenic activity of lamotrigine in the brain of fetuses of rats who had received the drug. In this experimental study, 40 female rats were assigned randomly into four groups and after mating and confirming the vaginal plug, the control animals (group 1) were kept with no intervention, and the other three experimental groups were intraperitoneally injected with respective lamotrigine (75 mg/kg), and 100 and 200 mg/kg of flax seed hydroalcoholic extract. The drug was administered during the organogenesis period.
View Article and Find Full Text PDFThe purpose of this study was to describe the distinct regional distribution patterns of expression of the α7 and α4 subunits of nicotinic acetylcholine receptors (nAChRs) and their left-right lateralisation in the rat hippocampus during the first 2 weeks of postnatal (P) development. Eighteen male pups were randomly divided into three groups: P0, P7, and P14. After removing the newborn brains, real-time polymerase chain reaction, western blot, and immunohistochemistry techniques were used to evaluate expression of the receptors.
View Article and Find Full Text PDFBackground: The brain development during the prenatal period is affected by various factors, including the mother's metabolic condition. It has been revealed that diabetes in pregnancy is associated with structural and functional alterations in offspring's hippocampus. Hippocampus, as a critical region with well-known roles in learning and memory consolidation, is vulnerable to changes in glucose level.
View Article and Find Full Text PDFGABA is the chief inhibitory neurotransmitter in the adult brain. However, in the developing brain it acts as an excitatory transmitter causing depolarization. Thereby, activates calcium-dependent processes that are crucial for brain development.
View Article and Find Full Text PDFDiabetes in pregnancy is associated with an increasing risk of congenital malformations and central nervous system disorders (CNS) especially hippocampal neuronal circuitry disruption as a discreet region involved in neurogenesis phenomenon. This study aimed to investigate the effect of maternal diabetes and insulin treatment on the expression and distribution pattern of NeuN and DCX as two important markers of neurogenesis paradigm in developing rat hippocampus. All animals were randomly divided into three groups as follows: Control group, Diabetic (STZ-D), Diabetic treated with insulin (STZ-INS).
View Article and Find Full Text PDFThere is increasing evidence that maternal diabetes mellitus during the pregnancy is associated with a higher risk of neurodevelopmental and neurofunctional anomalies including motor dysfunctions, learning deficits, and behavioral problems in offspring. The cerebellum is a part of the brain that has long been recognized as a center of movement balance and motor coordination. Moreover, recent studies in humans and animals have also implicated the cerebellum in cognitive processing, sensory discrimination, attention, and learning and memory.
View Article and Find Full Text PDFDiabetes during pregnancy impairs the development of the central nervous system (CNS) and causes cognitive and behavioral abnormalities in offspring. However, the exact mechanism by which the maternal diabetes affects the development of the brain remains to be elucidated. The aim of the present study was to investigate the effects of maternal diabetes in pregnancy on the expression of Bcl-2 and Bax genes and the numerical density of degenerating dark neurons (DNs) in the hippocampus of offspring at the first postnatal two weeks.
View Article and Find Full Text PDFBackground: Diabetes in pregnancy is a common metabolic disorder associated with various adverse outcomes in the offspring including impairments in attention and memory and alterations in social behavior. Glial cells are proven to have a critical role in normal function of neurons, and alteration in their activity could contribute to disturbance in the brain function. The aim of this study was to investigate the effect of maternal diabetes on hippocampal mRNA expression and distribution pattern of glial fibrillary acidic protein (GFAP) immunoreactive glial cells in the dentate gyrus (DG) of rat neonate at postnatal day 14 (P14).
View Article and Find Full Text PDFBackground: L-arginine has been recently investigated and proposed to reduce neurological damage after various experimental models of neuronal cellular damage. In this study, we aim to evaluate the beneficial effects of L-arginine administration on the numerical density of dark neurons (DNs) in the substantia nigra pars compacta (SNc) of Balb/c mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration.
Materials And Methods: Male Balb/c mice were randomly divided into 4 groups (n = 7 each): MPTP only; saline only (control); MPTP + L-arginine; and L-arginine only.
There is sufficient evidence that diabetes during pregnancy is associated with a higher risk of neurodevelopmental anomalies including learning deficits, behavioral problems and motor dysfunctions in the offspring. Synaptophysin (SYP) is an integral membrane protein of synaptic vesicles and is considered as a marker for synaptogenesis and synaptic density. This study aimed to examine the effects of maternal diabetes in pregnancy on the expression and localization of SYP in the developing rat cerebellum.
View Article and Find Full Text PDFLead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e.
View Article and Find Full Text PDFBackground: Diabetes in pregnancy has a detrimental effect on central nervous system (CNS) development and is associated with an increased risk of short- and long-term neurocognitive impairment in the offspring. This study aimed to investigate the effect of maternal diabetes and also insulin treatment on the numerical density of apoptotic cells in rat neonate's hippocampi during the first two postnatal weeks.
Methods: Wistar female rats were maintained diabetic from a week before gestation through parturition and their male pup's brains were collected at postnatal days (P); P0, P7 and P14, equivalent to the third trimester in human.
Background: Diabetes mellitus is associated with cognitive deficits in humans and animals. These deficits are paralleled by neurophysiological and structural changes in brain. In diabetic animals, impairments of spatial learning, memory, and cognition occur in association with distinct changes in hippocampus, a key brain area for many forms of learning and memory and are particularly sensitive to changes in glucose homeostasis.
View Article and Find Full Text PDFObjective: Simple Febrile Seizure (SFS) is the most common seizure disorder in childhood, and is frequently described as inoffensive disorder. Nevertheless, there is evidence suggesting the association between neonatal febrile seizures and hippocampal abnormalities in adulthood. This study was conducted at evaluating the hippocampal expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins following SFS induction in rat neonates.
View Article and Find Full Text PDF