Cavitation, the formation and collapse of vapor-filled bubbles, poses a problem in spring-driven autoinjectors (AIs). It occurs when the syringe accelerates abruptly during activation, causing pressure fluctuations within the liquid. These bubbles expand and then collapse, generating shock waves that can harm both the device and the drug molecules.
View Article and Find Full Text PDFUnderstanding the interface motion and hydrodynamic shear induced by the liquid sloshing during the insertion stage of an autoinjector can help improve drug product administration. We perform experiments to investigate the interfacial motion and hydrodynamic shear due to the acceleration and deceleration of syringes. The goal is to explore the role of fluid properties, air gap size, and syringe acceleration on the interface dynamics caused by autoinjector activation.
View Article and Find Full Text PDFPurpose: Cavitation is an undesired phenomenon that may occur in certain types of autoinjectors (AIs). Cavitation happens because of rapid changes of pressure in a liquid, leading to the formation of small vapor-filled cavities, which upon collapsing, can generate an intense shock wave that may damage the device container and the protein drug molecules. Cavitation occurs in the AI because of the syringe-drug relative displacement as a result of the syringe's sudden acceleration during needle insertion and the ensuing pressure drop at the bottom of the container.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2021
Liquid perfluorocarbon-based nanodroplets are stable enough to be used in extravascular imaging, but provide limited contrast enhancement due to their small size, incompressible core, and small acoustic impedance mismatch with biological fluids. Here we show a novel approach to overcoming this limitation by using a heating-cooling cycle, which we will refer to as thermal modulation (TM), to induce echogenicity of otherwise stable but poorly echogenic nanodroplets without triggering a transient phase shift. We apply thermal modulation to high-boiling point tetradecafluorohexane (TDFH) nanodroplets stabilized with a bovine serum albumin (BSA) shell.
View Article and Find Full Text PDFAutoinjectors are a convenient and efficient way to self-administer subcutaneous injections of biopharmaceuticals. Differences in device mechanical design can affect the autoinjector functionality and performance. This study investigates the performance differences of two single-spring-actuated autoinjectors.
View Article and Find Full Text PDF