With the recent advances in autonomous vehicles, there is an increasing need for sensors that can help monitor tire-road conditions and the forces that are applied to the tire. The footprint area of a tire that makes direct contact with the road surface, known as the contact patch, is a key parameter for determining a vehicle's effectiveness in accelerating, braking, and steering at various velocities. Road unevenness from features such as potholes and cracks results in large fluctuations in the contact patch surface area.
View Article and Find Full Text PDFThis paper introduces an innovative approach for elastic property characterization of soft tissues, having directional-dependent material behavior, via their vibration response measurement and interpretation. The full-field time-dependent surface displacements as a result of externally excited soft tissues are collected through digital image correlation (DIC). A developed analytical model, capturing the low-amplitude vibration behavior of anisotropic layered human skin with the incorporation of the influence of subcutaneous elasticity and inertia, is employed to accurately predict its resonant frequencies and pertaining displacement field images.
View Article and Find Full Text PDFThis paper proposes an innovative approach to identify elastic material properties and mass density of soft tissues based on interpreting their mechanical vibration response, externally excited by a mechanical indenter or acoustic waves. A vibration test is performed on soft sheets to measure their response to a continuous range of excitation frequencies. The frequency responses are collected with a pair of high-speed cameras in conjunction with 3-D digital image correlation (DIC).
View Article and Find Full Text PDFLightweight materials, such as polymers and composites, are increasingly used in the automotive and aerospace industries. Recently, there has been an increase in the use of these materials, especially in electric vehicles. However, these materials cannot shield sensitive electronics from electromagnetic interference (EMI).
View Article and Find Full Text PDFThis paper reviews the advances made in recent years on modeling approaches and experimental techniques to characterize the mechanical properties of human skin. The skin is the largest organ of the human body that has a complex multi-layered structure with different mechanical behaviors. The mechanical properties of human skin play an important role in distinguishing between healthy and unhealthy skin.
View Article and Find Full Text PDFSeveral noninvasive imaging techniques have been developed to monitor the health of skin and enhance the diagnosis of skin diseases. Among them, skin elastography is a popular technique used to measure the elasticity of the skin. A change in the elasticity of the skin can influence its natural frequencies and mode shapes.
View Article and Find Full Text PDF