Publications by authors named "Jaurand M"

Pathology plays an important role in diagnosing mesothelioma since radiological and clinical findings alone cannot distinguish mesothelioma reliably from its many mimics. The long-held gold standard for pathological diagnosis requires a tissue biopsy that, in addition to mesothelial phenotype, demonstrates invasion, but this is challenged by the WHO recognition of mesothelioma in situ (MIS) and concurrent acknowledgement of all mesotheliomas as malignant. Tumor sampling and ancillary techniques are of paramount importance for diagnosis of MIS.

View Article and Find Full Text PDF

Background: Malignant pleural mesothelioma (MPM) is a heterogeneous cancer. Better knowledge of molecular and cellular intra-tumor heterogeneity throughout the thoracic cavity is required to develop efficient therapies. This study focuses on molecular intra-tumor heterogeneity using the largest series to date in MPM and is the first to report on the multi-omics profiling of a substantial series of multi-site tumor samples.

View Article and Find Full Text PDF

Malignant mesothelioma (MM), especially its more frequent form, malignant pleural mesothelioma (MPM), is a devastating thoracic cancer with limited therapeutic options. Recently, clinical trials that used immunotherapy strategies have yielded promising results, but the benefits are restricted to a limited number of patients. To develop new therapeutic strategies and define predictors of treatment response to existing therapy, better knowledge of the cellular and molecular mechanisms of MM tumors and sound preclinical models are needed.

View Article and Find Full Text PDF

Development of precision medicine for malignant pleural mesothelioma (MPM) requires a deep knowledge of tumor heterogeneity. Histologic and molecular classifications and histo-molecular gradients have been proposed to describe heterogeneity, but a deeper understanding of gene mutations in the context of MPM heterogeneity is required and the associations between mutations and clinical data need to be refined. We characterized genetic alterations on one of the largest MPM series (266 tumor samples), well annotated with histologic, molecular and clinical data of patients.

View Article and Find Full Text PDF

We determined the proportions of epithelioid-like and sarcomatoid-like cellular entities within malignant pleural mesothelioma samples, by deconvolution of their transcriptomes. These proportions are associated with prognosis and may guide therapeutic strategies. This novel approach describes both intra- and inter-tumor heterogeneity and provides a new way of thinking about cancer pathology.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is recognized as heterogeneous based both on histology and molecular profiling. Histology addresses inter-tumor and intra-tumor heterogeneity in MPM and describes three major types: epithelioid, sarcomatoid and biphasic, a combination of the former two types. Molecular profiling studies have not addressed intra-tumor heterogeneity in MPM to date.

View Article and Find Full Text PDF

Objectives: Malignant pleural mesothelioma (MPM) is an aggressive tumor with limited therapeutic options, requiring the development of efficient targeted therapies based on molecular phenotype of the tumor and to identify predictive biomarkers of the response.

Materials And Methods: The effect of inhibitors was investigated by cell viability assessment on primary MPM cell lines established in our laboratory from patient tumors, well characterized at the molecular level. Effects on apoptosis, cell proliferation and viability on MPM growing in multicellular spheroid were also assessed for verteporfin.

View Article and Find Full Text PDF

Malignant mesothelioma (MM), a rare and severe cancer, mainly caused as a result of past-asbestos exposure, is presently a public health concern. Current molecular studies aim to improve the outcome of the disease, providing efficient therapies based on the principles of precision medicine. To model the molecular profile of human malignant mesothelioma, animal models have been developed in rodents, wild type animals and genetically engineered mice harbouring mutations in tumour suppressor genes, especially selecting genes known to be inactivated in human malignant mesothelioma.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is predominantly an occupational cancer, most often linked to asbestos exposure. Malignant pleural mesothelioma prognosis is poor with a short survival median, due to the aggressiveness of tumor cells and the weak efficiency of conventional anti-cancer therapies. Clinical, histological, and molecular data suggest tumor heterogeneity between patients as it was also shown for other cancer types.

View Article and Find Full Text PDF

To better define malignant pleural mesothelioma (MPM) heterogeneity and identify molecular subtypes of MPM, we focus on the tumor suppressor gene , a member of the Hippo signaling pathway, which plays a key role in mesothelial carcinogenesis. Sixty-one MPM primary cultures established in our laboratory were screened for mutations in Gene inactivation was modeled using siRNAs. Gene and protein expressions were analyzed by quantitative RT-PCR, Western blot analysis, and reverse phase protein array.

View Article and Find Full Text PDF

Despite the reduction of global asbestos consumption and production due to the ban or restriction of asbestos uses in more than 50 countries since the 1970s, malignant mesothelioma remains a disease of concern. Asbestos is still used, imported, and exported in several countries, and the number of mesothelioma deaths may be expected to increase in the next decades in these countries. Asbestos exposure is the main risk factor for malignant pleural mesothelioma, but other types of exposures are linked to the occurrence of this type of cancer.

View Article and Find Full Text PDF

In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers.

View Article and Find Full Text PDF

The fibrogenicity and carcinogenicity of asbestos fibers are dependent on several fiber parameters including fiber dimensions. Based on the WHO (World Health Organization) definition, the current regulations focalise on long asbestos fibers (LAF) (Length: L ≥ 5 μm, Diameter: D < 3 μm and L/D ratio > 3). However air samples contain short asbestos fibers (SAF) (L < 5 μm).

View Article and Find Full Text PDF

Mesothelioma is a rare disease less than 0.3% of cancers in France, very aggressive and resistant to the majority of conventional therapies. Asbestos exposure is nearly the only recognized cause of mesothelioma in men observed in 80% of case.

View Article and Find Full Text PDF

Purpose: Despite research efforts to develop more effective diagnostic and therapeutic approaches, malignant pleural mesothelioma (MPM) prognosis remains poor. The assessment of tumor response to therapy can be improved by a deeper phenotypical classification of the tumor, with emphasis on its clinico-biological heterogeneity. The identification of molecular profiles is a powerful approach to better define MPM subclasses and targeted therapies.

View Article and Find Full Text PDF

It is now well established that some pleural diseases, pleural plaques and malignant mesothelioma are related to asbestos fibre exposure although the mechanism of action of asbestos fibres is not fully understood. The development of artificial mineral fibres and carbon nanotubes, which share some morphological characteristics similar to asbestos fibres, is a present concern in the context of pleural diseases. Pleural plaques develop only in the parietal pleura, and in the 1990s, clinical observations have shown that the early development of mesothelioma also occurred on the parietal pleura.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is a very aggressive tumor with no known curative treatment. Better knowledge of the molecular mechanisms of mesothelial carcinogenesis is required to develop new therapeutic strategies. MPM, like all cancer cells, needs to maintain telomere length to prevent senescence.

View Article and Find Full Text PDF

Given the interest in defining biomarkers of asbestos exposure and to provide insights into asbestos-related and cell-specific mechanisms of neoplasia, the identification of gene alterations in asbestos-related cancers can help to a better understanding of exposure risk. To understand the aetiology of asbestos-induced malignancies and to increase our knowledge of mesothelial carcinogenesis, we compared genetic alterations in relevant cancer genes between lung cancer, induced by asbestos and tobacco smoke, and malignant pleural mesothelioma (MPM), a cancer related to asbestos, but not to tobacco smoke. TP53, KRAS, EGFR and NF2 gene alteration analyses were performed in 100 non-small cell lung cancer (NSCLC) patients, 50 asbestos-exposed and 50 unexposed patients, matched for age, gender, histology and smoking habits.

View Article and Find Full Text PDF

Context: In recent decades, research on malignant pleural mesothelioma (MPM) has been developed to improve patients' outcomes by increasing the level of confidence in MPM diagnosis and prognosis.

Objective: To summarize data on genetic and epigenetic abnormalities in MPM that may be of interest for a better management of patients with MPM.

Data Sources: Data were obtained from scientific publications on genetic and epigenetic abnormalities in MPM by studying gene mutations, DNA methylation, and gene and microRNA expression profiling.

View Article and Find Full Text PDF

The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases.

View Article and Find Full Text PDF

Malignant mesothelioma (MM) is an aggressive tumor with a poor prognosis mainly linked to past asbestos exposure. Murine models of MM based on fiber exposure have been developed to elucidate the mechanism of mesothelioma formation. Genomic alterations in murine MM have now been partially characterized.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs), the product of new technology, may be used in a wide range of applications. Because they present similarities to asbestos fibres in terms of their shape and size, it is legitimate to raise the question of their safety for human health. Recent animal and cellular studies suggest that CNTs elicit tissue and cell responses similar to those observed with asbestos fibres, which increases concern about the adverse biological effects of CNTs.

View Article and Find Full Text PDF

Epidemiological studies have shown that asbestos fibers constitute the major occupational risk factor and that asbestos acts synergistically with tobacco smoking to induce lung cancer. Although some somatic gene alterations in lung cancer have been linked to tobacco smoke, few data are available on the role of asbestos fibers. P16/CDKN2A is an important tumor suppressor gene that is frequently altered in lung cancer via promoter 5'-CpG island hypermethylation and homozygous deletion, and rarely via point mutation.

View Article and Find Full Text PDF

Pleural fluid accumulation is a frequent clinical observation in diffuse malignant pleural mesothelioma (MPM). The cytological analysis of pleural fluid often reveals the presence of free spheroid aggregates of malignant cells, giving rise to the question of the ability of non-adherent tumor cells to resist the loss of anchorage-induced apoptosis (termed as anoikis), and to develop new tumor foci in the pleural cavity. Here, we show that MPM cells cultured under non-adherent conditions form well-organized aggregates composed of viable cells, which progressively enter in G(0).

View Article and Find Full Text PDF