The export of peptides or proteins is essential for a variety of important functions in bacteria. Among the diverse protein-translocation systems, peptidase-containing ABC transporters (PCAT) are involved in the maturation and export of quorum-sensing or antimicrobial peptides in Gram-positive bacteria and of toxins in Gram-negative organisms. In the multicellular and diazotrophic cyanobacterium PCC 7120, the protein HetC is essential for the differentiation of functional heterocysts, which are micro-oxic and non-dividing cells specialized in atmospheric nitrogen fixation.
View Article and Find Full Text PDFDrug-resistant bacteria are a serious threat to human health as antibiotics are gradually losing their clinical efficacy. Comprehending the mechanism of action of antimicrobials and their resistance mechanisms plays a key role in developing new agents to fight antimicrobial resistance. The lipopeptide daptomycin is an antibiotic that selectively disrupts Gram-positive bacterial membranes, thereby showing slower resistance development than many classical drugs.
View Article and Find Full Text PDFATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle.
View Article and Find Full Text PDFMicroorganisms need to constantly exchange with their habitat to capture nutrients and expel toxic compounds. The ATP-binding cassette (ABC) transporters, a family of membrane proteins especially abundant in microorganisms, are at the core of these processes. Due to their extraordinary ability to expel structurally unrelated compounds, some transporters play a protective role in different organisms.
View Article and Find Full Text PDFThe detailed mechanism of ATP hydrolysis in ATP-binding cassette (ABC) transporters is still not fully understood. Here, we employed P solid-state NMR to probe the conformational changes and dynamics during the catalytic cycle by locking the multidrug ABC transporter BmrA in prehydrolytic, transition, and posthydrolytic states, using a combination of mutants and ATP analogues. The P spectra reveal that ATP binds strongly in the prehydrolytic state to both ATP-binding sites as inferred from the analysis of the nonhydrolytic E504A mutant.
View Article and Find Full Text PDFOverexpression of properly folded membrane proteins is a mandatory step for their functional and structural characterization. One of the most used expression systems for the production of proteins is Escherichia coli. Many advantageous strains combined with T7 expression systems have been developed over the years.
View Article and Find Full Text PDFTwo-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models.
View Article and Find Full Text PDFABC ("ATP-Binding Cassette") transporters of the type IV subfamily consist of exporters involved in the efflux of many compounds, notably those capable to confer multidrug resistance like the mammalian P-glycoprotein or the bacterial transporter BmrA. They function according to an alternating access mechanism between inward-facing (IF) and outward-facing (OF) conformations, but the extent of physical separation between the two nucleotide-binding domains (NBDs) in different states is still unsettled. Small Angle Neutron Scattering and hydrogen/deuterium exchange coupled to mass spectrometry were used to highlight different conformational states of BmrA during its ATPase cycle.
View Article and Find Full Text PDFMultidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg-bound outward-facing conformations of the (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in . Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other.
View Article and Find Full Text PDFThe resistance of microbes to commonly used antibiotics has become a worldwide health problem. A major underlying mechanism of microbial antibiotic resistance is the export of drugs from bacterial cells. Drug efflux is mediated through the action of multidrug resistance efflux pumps located in the bacterial cell membranes.
View Article and Find Full Text PDFThe objective of this study was to assess the role of UbK, a novel protein kinase, in the growth of Bacillus subtilis, especially under oxidative stress conditions. Growth profiles of wild-type and ΔubK mutant strains were assessed in the presence of paraquat, an in vivo inducer of oxidative stress. Wild-type B.
View Article and Find Full Text PDFMultidrug membrane transporters can extrude a wide range of substrates, which cause multidrug resistance and ineffective treatment of diseases. In this study, we used three different sized antibiotic drug nanocarriers to study their size-dependent inhibitory effects against . We functionalized 2.
View Article and Find Full Text PDFExtrusion of drugs or drug-like compounds through bacterial efflux pumps is a serious health issue that leads to loss in drug efficacy. Combinatorial therapies of low-efficacy drugs with efflux pump inhibitors may help to restore the activities of such drugs. In this quest, natural products are attractive molecules, since in addition to their wide range of bioactivities they may inhibit efflux pumps.
View Article and Find Full Text PDFProtein phosphorylation is a key post-translational modification required for many cellular functions of the bacterial cell. Recently, we identified a new protein-kinase, named UbK, in that belongs to a new family of protein-kinases widespread in bacteria. In this study, we analyze the function of UbK in .
View Article and Find Full Text PDFMultidrug efflux transporters are a plague in the antibiotic resistance mechanisms as they confer the capacity of bacteria to evade most of current therapies. Although these transporters were initially discovered as proton-motive driven pumps, another class of multidrug efflux transporters has emerged in the mid-90s that are powered by ATP hydrolysis. This new class of transporters belongs to one of the largest families of proteins, the ATP-Binding Cassette (ABC) transporters, which are involved in the influx or efflux of a huge variety of molecules.
View Article and Find Full Text PDFATP-binding-cassette (ABC) transporters are molecular pumps that translocate molecules across the cell membrane by switching between inward-facing and outward-facing states. To obtain a detailed understanding of their mechanism remains a challenge to structural biology, as these proteins are notoriously difficult to study at the molecular level in their active, membrane-inserted form. Here we use solid-state NMR to investigate the multidrug ABC transporter BmrA reconstituted in lipids.
View Article and Find Full Text PDFOverexpression of correctly folded membrane proteins is a fundamental prerequisite for functional and structural studies. One of the most commonly used expression systems for the production of membrane proteins is Escherichia coli. While misfolded proteins typically aggregate and form inclusions bodies, membrane proteins that are addressed to the membrane and extractable by detergents are generally assumed to be properly folded.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
May 2019
Laurylmaltose neopentylglycol (LMNG) bears two linked hydrophobic chains of equal length and two hydrophilic maltoside groups. It arouses a strong interest in the field of membrane protein biochemistry, since it was shown to efficiently solubilize and stabilize membrane proteins often better than the commonly used dodecylmaltopyranoside (DDM), and to allow structure determination of some challenging membrane proteins. However, LMNG was described to form large micelles, which could be unfavorable for structural purposes.
View Article and Find Full Text PDFDuring the evolution of cellular bioenergetics, many protein families have been fashioned to match the availability and replenishment in energy supply. Molecular motors and primary transporters essentially need ATP to function while proteins involved in cell signaling or translation consume GTP. ATP-Binding Cassette (ABC) transporters are one of the largest families of membrane proteins gathering several medically relevant members that are typically powered by ATP hydrolysis.
View Article and Find Full Text PDFEngA is a conserved bacterial GTPase involved in ribosome biogenesis. While essential in bacteria, EngA does not have any human orthologue and can thus be an interesting target for new antibacterial compounds. EngA is the only known GTPase bearing two G domains, making unique its catalytic cycle and the induced modulation of its conformation and interaction with the ribosome.
View Article and Find Full Text PDFWe here adapted the GRecon method used in electron microscopy studies for membrane protein reconstitution to the needs of solid-state NMR sample preparation. We followed in detail the reconstitution of the ABC transporter BmrA by dialysis as a reference, and established optimal reconstitution conditions using the combined sucrose/cyclodextrin/lipid gradient characterizing GRecon. We established conditions under which quantitative reconstitution of active protein at low lipid-to-protein ratios can be obtained, and also how to upscale these conditions in order to produce adequate amounts for NMR.
View Article and Find Full Text PDFFine tuning of signaling pathways is essential for cells to cope with sudden environmental variations. This delicate balance is maintained in particular by protein kinases that control the activity of target proteins by reversible phosphorylation. In addition to homologous eukaryotic enzymes, bacteria have evolved some specific Ser/Thr/Tyr protein kinases without any structural resemblance to their eukaryotic counterparts.
View Article and Find Full Text PDFMost membrane proteins studies require the use of detergents, but because of the lack of a general, accurate and rapid method to quantify them, many uncertainties remain that hamper proper functional and structural data analyses. To solve this problem, we propose a method based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) that allows quantification of pure or mixed detergents in complex with membrane proteins. We validated the method with a wide variety of detergents and membrane proteins.
View Article and Find Full Text PDFATP-binding cassette (ABC) membrane transporters exist in all living organisms and play key roles in a wide range of cellular and physiological functions. The ABC transporters can selectively extrude a wide variety of structurally and functionally unrelated substrates, leading to multidrug resistance. Despite extensive study, their efflux molecular mechanisms remain elusive.
View Article and Find Full Text PDF