Genetic toxicity testing assesses the potential of compounds to cause DNA damage. There are many genetic toxicology screening assays designed to assess the DNA damaging potential of chemicals in early drug development aiding the identification of promising drugs that have low-risk potential for causing genetic damage contributing to cancer risk in humans. Despite this, in vitro tests generate a high number of misleading positives, the consequences of which can lead to unnecessary animal testing and/or the abandonment of promising drug candidates.
View Article and Find Full Text PDFObjective: To analyze the long-term symptomatic results of laser-assisted sialolithotripsy (LAS) in cases of obstructive sialolithiasis and correlate with objective criteria using diagnostic sialendoscopy (DS) as a method of examination.
Methods: This is a retrospective study comprising 50 consecutive patients who underwent holmium-YAG LAS and completed follow-up of at least 6 months. Symptom scoring and endoscopic scoring were done at 6 weeks and 6 months intervals for further study purposes.
The in vitro micronucleus assay is a globally significant method for DNA damage quantification used for regulatory compound safety testing in addition to inter-individual monitoring of environmental, lifestyle and occupational factors. However, it relies on time-consuming and user-subjective manual scoring. Here we show that imaging flow cytometry and deep learning image classification represents a capable platform for automated, inter-laboratory operation.
View Article and Find Full Text PDFIn vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay.
View Article and Find Full Text PDFCurrent in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential.
View Article and Find Full Text PDFUse of imaging flow cytometry to assess induced DNA damage via the cytokinesis block micronucleus (CBMN) assay has thus far been limited to radiation dosimetry in human lymphocytes using high end, 'ImageStream X' series imaging cytometers. Its potential to enumerate chemically induced DNA damage using in vitro cell lines remains unexplored. In the present manuscript, we investigate the more affordable FlowSight® imaging cytometry platform to assess in vitro micronucleus (MN) induction in the human lymphoblastoid TK6 and metabolically competent MCL-5 cells treated with Methyl Methane Sulfonate (MMS) (0-5 µg/ml), Carbendazim (0-1.
View Article and Find Full Text PDFHuman exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis.
View Article and Find Full Text PDFThe use of manual microscopy for the scoring of chromosome damage in the in vitro micronucleus assay is often associated with user subjectivity. This level of subjectivity can be reduced by using automated platforms, which have added value of faster with high-throughput and multi-endpoint capabilities. However, there is a need to assess the reproducibility and sensitivity of these automated platforms compared with the gold standard of the manual scoring.
View Article and Find Full Text PDF