Publications by authors named "Jatin N Kumar"

Alginate based comb copolymers were synthesized by reversible addition-fragmentation chain transfer (RAFT). Alginate was used both in its supplied (213 kDa) and depolymerized (73 kDa) forms and prepared into a macroRAFT agent by solubility modification with tetrabutyl ammonium ions and functionalization with a RAFT agent on its hydroxyl moieties. Poly(oligo ethylene glycol methacrylate) (POEGMA) was then polymerized from the macroRAFT agents in organic solvent demonstrating pseudo first-order kinetics.

View Article and Find Full Text PDF

A surfactant-free emulsion-based approach is developed for preparation of nanogels. A water-in-oil emulsion is generated feasibly from a mixture of water and a solution of disulfide-containing hyperbranched PEGylated poly(amido amine)s, poly(BAC2-AMPD1)-PEG, in chloroform. The water droplets in the emulsion are stabilized and filled with poly(BAC2-AMPD1)-PEG, and the crosslinked poly(amido amine)s nanogels are formed via the intermolecular disulfide exchange reaction.

View Article and Find Full Text PDF

Vinyl-terminated hyperbranched poly(amido amine)s is obtained by Michael addition polymerization of 4-(aminomethyl)piperidine (AMPD) with a double molar N,N-cystaminebis(acrylamide) (BAC). Then an amphiphilic hyperbranched poly(BAC2-AMPD1)-PEG is produced via converting the vinyl groups to amines followed by PEGylation. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and (1)H nuclear magnetic resonance (NMR) results indicate that the micelles can be obtained via self-assembly of hyperbranched poly(BAC2-AMPD1)-PEG.

View Article and Find Full Text PDF

Fluorescent carbon dot (C-dot) nanoclusters composed of C-dot-loaded hollow silica spheres are obtained via the dehydration of mannose, which is adsorbed onto hollow silica spheres or poly(ethylene glycol)-graft-hollow silica spheres (PEG-g-hollow silica). The structure of C-dot nanoclusters are confirmed using 1H NMR, FTIR, TEM and TGA. C-dot nanoclusters show a redshifted fluorescence emission with an increased excitation wavelength.

View Article and Find Full Text PDF

An optimized condition is identified to prepare linear poly(amido amine)s via Michael Addition polymerization of trifunctional amine, 4-(aminomethyl)piperidine (AMPD), with an equimolar diacrylamide, N,N-cystaminebis(acrylamide) (BAC). Poly(ethylene glycol) (PEG) and cholesterol (CE) are conjugated to linear poly(BAC-AMPD) through the reactions with the secondary amino groups in the backbone, respectively, to form poly(BAC-AMPD)-g-PEG-g-CE. The chemical structures of poly(BAC-AMPD) and poly(BAC-AMPD)-g-PEG-g-CE are characterized using NMR and gel permeation chromatography (GPC).

View Article and Find Full Text PDF

Rocket-like vesicles formed are composed of poly(acrylic aicd) (PMAA )/poly(ethylene glycol) (PEG) complex coated hollow silica spheres, and the structure and composition of the vesicles are characterized using TGA, (1)H NMR, FTIR, and TEM. Although only one-third of EG units of PEG brushes grafted to hollow silica spheres form the complex with PMAA via hydrogen bonding, the first "booster" layer composed of PMAA/PEG complex can provide secure encapsulation of model compound calcein blue under an acidic condition. The second "booster" layer composed of PEG brushes can be formed by changing acidic pH to 7.

View Article and Find Full Text PDF

Redox-responsive hyperbranched poly(amido amine)s (PAAs) with tertiary amino cores and amine, poly(ethylene glycol) (PEG) and hydroxyl terminal groups were prepared for DNA delivery respectively. The DNA condensation capability of PAAs was investigated using gel electrophoresis, and the results showed that PAA terminated with 1-(2-aminoethyl)piperazine (AEPZ) (BAA) is the most efficient in binding plasmid DNA (pDNA). The diameter and zeta-potential of polyplexes from PAAs were characterized using dynamic light scattering (DLS), and the morphology of the polyplexes was obtained using atomic force microscopy (AFM).

View Article and Find Full Text PDF