Publications by authors named "Jatin Kala"

With climate change, heat waves are becoming increasingly frequent, intense and broader in spatial extent. However, while the lethal effects of heat waves on humans are well documented, the impacts on flora are less well understood, perhaps except for crops. We summarize recent findings related to heat wave impacts including: sublethal and lethal effects at leaf and plant scales, secondary ecosystem effects, and more complex impacts such as increased heat wave frequency across all seasons, and interactions with other disturbances.

View Article and Find Full Text PDF

Increasing atmospheric CO is both leading to climate change and providing a potential fertilisation effect on plant growth. However, southern Australia has also experienced a significant decline in rainfall over the last 30 years, resulting in increased vegetative water stress. To better understand the dynamics and responses of Australian forest ecosystems to drought and elevated CO, the magnitude and trend in water use efficiency (WUE) of forests, and their response to drought and elevated CO from 1982 to 2014 were analysed, using the best available model estimates constrained by observed fluxes from simulations with fixed and time-varying CO.

View Article and Find Full Text PDF

Heat waves have profoundly impacted biota globally over the past decade, especially where their ecological impacts are rapid, diverse, and broad-scale. Although usually considered in isolation for either terrestrial or marine ecosystems, heat waves can straddle ecosystems of both types at subcontinental scales, potentially impacting larger areas and taxonomic breadth than previously envisioned. Using climatic and multi-species demographic data collected in Western Australia, we show that a massive heat wave event straddling terrestrial and maritime ecosystems triggered abrupt, synchronous, and multi-trophic ecological disruptions, including mortality, demographic shifts and altered species distributions.

View Article and Find Full Text PDF

Stomatal conductance links plant water use and carbon uptake, and is a critical process for the land surface component of climate models. However, stomatal conductance schemes commonly assume that all vegetation with the same photosynthetic pathway use identical plant water use strategies whereas observations indicate otherwise. Here, we implement a new stomatal scheme derived from optimal stomatal theory and constrained by a recent global synthesis of stomatal conductance measurements from 314 species, across 56 field sites.

View Article and Find Full Text PDF