Insulin is a pivotal peptide hormone essential for regulating glucose homeostasis. It has been known for over 100 years, but its production and purification methods are still under improvement. Escherichia coli based bacterial expression system is primarily used for insulin production.
View Article and Find Full Text PDFThe environmental justice literature demonstrates consistently that low-income and minority communities are disproportionately exposed to environmental hazards. In this case study, we examined cumulative multipollutant, multidomain, and multimatrix environmental exposures in Milwaukee County, Wisconsin for the year 2015. We identified spatial hot spots in Milwaukee County both individually (using local Moran's I) and through clusters (using K-means clustering) across a profile of environmental pollutants that span regulatory domains and matrices of exposure, as well as socioeconomic indicators.
View Article and Find Full Text PDFConsidering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor CuNiSnS nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs.
View Article and Find Full Text PDFMobile sources are responsible for a substantial controllable portion of the reactive organic carbon (ROC) emitted to the atmosphere, especially in urban environments of the United States. We update existing methods for calculating mobile source organic particle and vapor emissions in the United States with over a decade of laboratory data that parameterize the volatility and organic aerosol (OA) potential of emissions from on-road vehicles, nonroad engines, aircraft, marine vessels, and locomotives. We find that existing emission factor information from Teflon filters combined with quartz filters collapses into simple relationships and can be used to reconstruct the complete volatility distribution of ROC emissions.
View Article and Find Full Text PDFVolatile chemical products (VCP) are an increasingly important source of hydrocarbon and oxygenated volatile organic compound (OVOC) emissions to the atmosphere, and these emissions are likely to play an important role as anthropogenic precursors for secondary organic aerosol (SOA). While the SOA from VCP hydrocarbons is often accounted for in models, the formation, evolution, and properties of SOA from VCP OVOCs remain uncertain. We use environmental chamber data and a kinetic model to develop SOA parameters for 10 OVOCs representing glycols, glycol ethers, esters, oxygenated aromatics, and amines.
View Article and Find Full Text PDFIn numerous developing countries, the lower cost of subsidized liquid fuels such as kerosene compared to market-rate fuels often results in fuel adulteration. Such misuse of kerosene is hard to detect with conventional detection technologies because they are either time consuming, expensive, not sensitive enough or require well-equipped analytical laboratories. In this work, we developed an inexpensive and easy-to-use device for rapid and onsite detection of fuel adulteration.
View Article and Find Full Text PDFMeteorin (Metrn) and Meteorin-like (Metrnl) are homologous secreted proteins involved in neural development and metabolic regulation. In this study, we have performed structure prediction and analysis of both Metrn and Metrnl using Alphafold2 (AF2) and RoseTTAfold (RF). Based on the domain and structural homology analysis of the predicted structures, we have identified that these proteins are composed of two functional domains, a CUB domain and an NTR domain, connected by a hinge/loop region.
View Article and Find Full Text PDFMemristors mimic synaptic functions in advanced electronics and image sensors, thereby enabling brain-inspired neuromorphic computing to overcome the limitations of the von Neumann architecture. As computing operations based on von Neumann hardware rely on continuous memory transport between processing units and memory, fundamental limitations arise in terms of power consumption and integration density. In biological synapses, chemical stimulation induces information transfer from the pre- to the post-neuron.
View Article and Find Full Text PDFAtmospheric models of secondary organic aerosol (OA) (SOA) typically rely on parameters derived from environmental chambers. Chambers are subject to experimental artifacts, including losses of (1) particles to the walls (PWL), (2) vapors to the particles on the wall (V2PWL), and (3) vapors to the wall directly (VWL). We present a method for deriving artifact-corrected SOA parameters and translating these to volatility basis set (VBS) parameters for use in chemical transport models (CTMs).
View Article and Find Full Text PDFPost-translational modifications remarkably regulate proteins' biological function. Small molecules such as reactive thiols, metabolites, and drugs may covalently modify the proteins and cause structural changes. This study reports the covalent modification and noncovalent interaction of insulin and captopril, an FDA-approved antihypertensive drug, through mass spectrometric and computation-based approaches.
View Article and Find Full Text PDFSecondary organic aerosol (SOA) data gathered in environmental chambers (ECs) have been used extensively to develop parameters to represent SOA formation and evolution. The EC-based parameters are usually constrained to less than one day of photochemical aging but extrapolated to predict SOA aging over much longer timescales in atmospheric models. Recently, SOA has been increasingly studied in oxidation flow reactors (OFRs) over aging timescales of one to multiple days.
View Article and Find Full Text PDFAccelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis.
View Article and Find Full Text PDFSecondary organic aerosol formation via condensation of organic vapors onto existing aerosol transforms the chemical composition and size distribution of ambient aerosol, with implications for air quality and Earth's radiative balance. Gas-to-particle conversion is generally thought to occur on a continuum between equilibrium-driven partitioning of semivolatile molecules to the pre-existing mass size distribution and kinetic-driven condensation of low volatility molecules to the pre-existing surface area size distribution. However, we offer experimental evidence in contrast to this framework.
View Article and Find Full Text PDFAmericans spend most of their time indoors at home, but comprehensive characterization of in-home air pollution is limited by the cost and size of reference-quality monitors. We assembled small "Home Health Boxes" (HHBs) to measure indoor PM, PM, CO, CO, NO, and O concentrations using filter samplers and low-cost sensors. Nine HHBs were collocated with reference monitors in the kitchen of an occupied home in Fort Collins, Colorado, USA for 168 h while wildfire smoke impacted local air quality.
View Article and Find Full Text PDFExposure to air pollution, including criteria pollutants such as fine particulate matter (PM) and ozone (O), has been associated with morbidity and mortality in mammals. As a genetically homogenous population that is closely monitored for health, dairy cattle present a unique opportunity to assess the association between changes in air pollution and mammalian health. Milk yield decreases in the summer if temperature and humidity, measured by the Temperature Humidity Index (THI).
View Article and Find Full Text PDFChlorination is the oldest and widely practiced method for disinfection of potable water across the globe but some microorganisms survive the chlorine treatment and become resistant. In this study, chlorine-resistant bacteria were isolated from 36 reservoirs of the Municipal Corporation of Greater Mumbai. Water was collected in winter, summer and rainy season.
View Article and Find Full Text PDFEpidemiological studies frequently use black carbon (BC) as a proxy for traffic-related air pollution (TRAP). However, wildfire smoke (WFS) represents an important source of BC not often considered when using BC as a proxy for TRAP. Here, we examined the potential for WFS to bias TRAP exposure assessments based on BC measurements.
View Article and Find Full Text PDFTernary CuSnS (CTS) is an attractive nontoxic and earth-abundant absorber material with suitable optoelectronic properties for cost-effective photoelectrochemical applications. Herein, we report the synthesis of high-quality CTS nanoparticles (NPs) using a low-cost facile hot injection route, which is a very simple and nontoxic synthesis method. The structural, morphological, optoelectronic, and photoelectrochemical (PEC) properties and heterojunction band alignment of the as-synthesized CTS NPs have been systematically characterized using various state-of-the-art experimental techniques and atomistic first-principles density functional theory (DFT) calculations.
View Article and Find Full Text PDFThe inability to communicate how infectious diseases are transmitted in human environments has triggered avoidance of interactions during the COVID-19 pandemic. We define a metric, Effective ReBreathed Volume (ERBV), that encapsulates how infectious pathogens, including SARS-CoV-2, transport in air. ERBV separates environmental transport from other factors in the chain of infection, allowing quantitative comparisons among situations.
View Article and Find Full Text PDFParticle phase state is a property of atmospheric aerosols that has important implications for the formation, evolution, and gas/particle partitioning of secondary organic aerosol (SOA). In this work, we use a size-resolved chemistry and microphysics model (Statistical Oxidation Model coupled to the TwO Moment Aerosol Sectional (SOM-TOMAS)), updated to include an explicit treatment of particle phase state, to constrain the bulk diffusion coefficient () of SOA produced from α-pinene ozonolysis. By leveraging data from laboratory experiments performed in the absence of a seed and under dry conditions, we find that the for SOA can be constrained ((1-7) × 10 cm s in these experiments) by simultaneously reproducing the time-varying SOA mass concentrations and the evolution of the particle size distribution.
View Article and Find Full Text PDFBiomass burning is the largest combustion-related source of volatile organic compounds (VOCs) to the atmosphere. We describe the development of a state-of-the-science model to simulate the photochemical formation of secondary organic aerosol (SOA) from biomass-burning emissions observed in dry (RH <20%) environmental chamber experiments. The modeling is supported by (i) new oxidation chamber measurements, (ii) detailed concurrent measurements of SOA precursors in biomass-burning emissions, and (iii) development of SOA parameters for heterocyclic and oxygenated aromatic compounds based on historical chamber experiments.
View Article and Find Full Text PDFWith an ongoing interest in displacing petroleum-based sources of energy with biofuels, there is a need to measure and model the formation and composition of secondary organic aerosol (SOA) from organic compounds present in biofuels. We performed chamber experiments to study SOA formation from four recently identified biofuel molecules and mixtures and commercial gasoline under high NOx conditions: diisobutylene, cyclopentanone, an alkylfuran mixture, and an ethanol-to-hydrocarbon (ETH) mixture. Cyclopentanone and diisobutylene had a significantly lower potential to form SOA compared to commercial gasoline, with SOA mass yields lower than or equal to 0.
View Article and Find Full Text PDFDespite improvements in air quality over the past 50 years, ambient air pollution remains an important public health issue in the United States. In particular, emissions from coal-fired power plants still have a substantial impact on both nearby and regional populations. Of particular concern is the potential for this impact to fall disproportionately on low-income communities and communities of color.
View Article and Find Full Text PDFBiomass burning is a major source of atmospheric particulate matter (PM) with impacts on health, climate, and air quality. The particles and vapors within biomass burning plumes undergo chemical and physical aging as they are transported downwind. Field measurements of the evolution of PM with plume age range from net decreases to net increases, with most showing little to no change.
View Article and Find Full Text PDF