Proc Natl Acad Sci U S A
February 2023
We used a model for permafrost hydrology informed by detailed measurements of soil ice content to better understand the potential risk of abrupt permafrost thaw triggered by melting ground ice, a key open question associated with permafrost response to a warming Arctic. Our spatially resolved simulations of a well-characterized site in polygonal tundra near Utqiaġvik, Alaska, agree well with multiple types of observations in the current climate. Projections indicate 63 cm of bulk subsidence from 2006 to 2100 in the strong-warming Representative Concentration Pathway 8.
View Article and Find Full Text PDFIntroduction: Vaccine hesitancy and delays in vaccine administration time have limited the success of prior influenza vaccination initiatives in the pediatric emergency department (ED). In 2018-2019, season 1, this ED implemented mandatory vaccine screening and offered the vaccine to all eligible patients; however, only 9% of the eligible population received the vaccine. In 2019-2020, season 2, the team sought to improve influenza vaccination rates from 9% to 15% and administer over 2,000 vaccines to eligible ED patients.
View Article and Find Full Text PDFLarge stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils.
View Article and Find Full Text PDFSoils represent the largest terrestrial reservoir of organic carbon, and the balance between soil organic carbon (SOC) formation and loss will drive powerful carbon-climate feedbacks over the coming century. To date, efforts to predict SOC dynamics have rested on pool-based models, which assume classes of SOC with internally homogenous physicochemical properties. However, emerging evidence suggests that soil carbon turnover is not dominantly controlled by the chemistry of carbon inputs, but rather by restrictions on microbial access to organic matter in the spatially heterogeneous soil environment.
View Article and Find Full Text PDFRecent warming in the Arctic, which has been amplified during the winter, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO). However, the amount of CO released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates. Here we synthesize regional observations of CO flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain.
View Article and Find Full Text PDFGlob Change Biol Bioenergy
September 2016
The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass () and big bluestem () on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA.
View Article and Find Full Text PDFSoil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems.
View Article and Find Full Text PDFLaboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g.
View Article and Find Full Text PDFThe rhizosphere priming effect (RPE) is a mechanism by which plants interact with soil functions. The large impact of the RPE on soil organic matter decomposition rates (from 50% reduction to 380% increase) warrants similar attention to that being paid to climatic controls on ecosystem functions. Furthermore, global increases in atmospheric CO2 concentration and surface temperature can significantly alter the RPE.
View Article and Find Full Text PDFThe potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO(2)] - is large.
View Article and Find Full Text PDFThe recovery of ecosystem C and N dynamics after disturbance can be a slow process. Chronosequence approaches offer unique opportunities to use space-for-time substitution to quantify the recovery of ecosystem C and N stocks and estimate the potential of restoration practices for C sequestration. We studied the distribution of C and N stocks in two chronosequences that included long-term cultivated lands, 3- to 26-year-old prairie restorations, and remnant prairie on two related soil series.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) are mutualistic with most species of plants and are known to influence plant community diversity and composition. To better understand natural plant communities and the ecological processes they control it is important to understand what determines the distribution and diversity of AMF. We tested three putative niche axes: plant species composition, disturbance history, and soil chemistry against AMF species composition to determine which axis correlated most strongly with a changing AMF community.
View Article and Find Full Text PDFThe general lack of significant changes in mineral soil C stocks during CO -enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO concentrations. Here, we show, through meta-analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2-9 years, at a median rate of 19 g C m yr .
View Article and Find Full Text PDFEstimates of forest net primary production (NPP) demand accurate estimates of root production and turnover. We assessed root turnover with the use of an isotope tracer in two forest free-air carbon dioxide enrichment experiments. Growth at elevated carbon dioxide did not accelerate root turnover in either the pine or the hardwood forest.
View Article and Find Full Text PDF• The carbon sink strength of arbuscular mycorrhizal fungi (AMF) was investigated by comparing the growth dynamics of mycorrhizal and nonmycorrhizal Andropogon gerardii plants over a wide range of equivalent tissue phosphorus : nitrogen (P : N) ratios. • Host growth, apparent photosynthesis (A ), net C gain (C ) and P and N uptake were evaluated in sequential harvests of mycorrhizal and nonmycorrhizal A. gerardii plants.
View Article and Find Full Text PDFAndropogon gerardii seed obtained from Kansas and Illinois was grown in a controlled environment in their own and each other's soils, with and without arbuscular mycorrhizal fungi (AMF). Each ecotype grew comparatively better in its own soil indicating adaptation to its soil of origin. Overall, A.
View Article and Find Full Text PDFThe Cyperaceae have generally been considered nonmycorrhizal, although recent evidence suggests that mycotrophy may be considerably more widespread among sedges than was previously realized. This study surveyed 23 species of Carex occurring in upland and wetland habitats in northeastern Illinois. Mycorrhizal infection by arbuscular fungi was found in the roots of 16 species of Carex and appears to occur in response to many factors, both environmental and phylogenetic.
View Article and Find Full Text PDFExternal hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi were quantified over a growing season in a reconstructed tallgrass prairie and an ungrazed cool-season pasture. In both sites, hyphal lengths increased throughout the growing season. Peak external hyphal lengths were 111 m cm of soil in the prairie and 81 m cm of soil in the pasture.
View Article and Find Full Text PDF